ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Fluor to serve as EPC contractor for Centrus’s Piketon plant expansion
The HALEU cascade at the American Centrifuge Plant in Piketon, Ohio. (Photo: Centrus Energy)
American Centrifuge Operating, a subsidiary of Centrus Energy Corp., has formed a multiyear strategic collaboration with Fluor Corporation in which Fluor will serve as the engineering, procurement, and construction (EPC) contractor for Centrus’s expansion of its uranium enrichment facility in Piketon, Ohio. Fluor will lead the engineering and design aspects of the American Centrifuge Plant’s expansion, manage the supply chain and procurement of key materials and services, oversee construction at the site, and support the commissioning of new capacity.
I. K. Park, J. H. Kim, S. H. Hong, B. T. Min, S. W. Hong, J. H. Song, H. D. Kim
Nuclear Technology | Volume 161 | Number 1 | January 2008 | Pages 45-56
Technical Paper | Thermal Hydraulics | doi.org/10.13182/NT08-A3912
Articles are hosted by Taylor and Francis Online.
The TROI tests were analyzed in view of the particle size responses for various types of fuel-coolant interactions. This can provide an understanding about the relationship among the initial conditions, mixing, and explosion. First, several findings from the TROI experiments were considered. The results of the fuel-coolant interactions (FCIs) were dependent on the composition of the corium, the water depth, and the water area in the TROI experiments. Then, the difference between the explosive FCI and nonexplosive FCI was defined by comparing the final particle size. This analysis indicates that the explosive FCI resulted in a large amount of fine particles and a small amount of big particles. With this, the mixing size of the particles to participate in the steam explosion and the fine particle size produced from the steam explosion could be defined in the TROI test. And then, the parametric effects on the particle size were analyzed using the nonexplosive TROI tests. We note that the explosive test results cannot provide information on the mixing process. This analysis on the particle size response indicates that the explosive system includes large-sized particles to participate in the steam explosion, but the nonexplosive system includes less large-sized particles and more fine-sized particles. These particle size responses should be considered during a reactor safety analysis because the particle size will be an important parameter for explaining a steam explosion occurrence or steam explosion strength.