ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
I. K. Park, J. H. Kim, S. H. Hong, B. T. Min, S. W. Hong, J. H. Song, H. D. Kim
Nuclear Technology | Volume 161 | Number 1 | January 2008 | Pages 45-56
Technical Paper | Thermal Hydraulics | doi.org/10.13182/NT08-A3912
Articles are hosted by Taylor and Francis Online.
The TROI tests were analyzed in view of the particle size responses for various types of fuel-coolant interactions. This can provide an understanding about the relationship among the initial conditions, mixing, and explosion. First, several findings from the TROI experiments were considered. The results of the fuel-coolant interactions (FCIs) were dependent on the composition of the corium, the water depth, and the water area in the TROI experiments. Then, the difference between the explosive FCI and nonexplosive FCI was defined by comparing the final particle size. This analysis indicates that the explosive FCI resulted in a large amount of fine particles and a small amount of big particles. With this, the mixing size of the particles to participate in the steam explosion and the fine particle size produced from the steam explosion could be defined in the TROI test. And then, the parametric effects on the particle size were analyzed using the nonexplosive TROI tests. We note that the explosive test results cannot provide information on the mixing process. This analysis on the particle size response indicates that the explosive system includes large-sized particles to participate in the steam explosion, but the nonexplosive system includes less large-sized particles and more fine-sized particles. These particle size responses should be considered during a reactor safety analysis because the particle size will be an important parameter for explaining a steam explosion occurrence or steam explosion strength.