ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Fluor to serve as EPC contractor for Centrus’s Piketon plant expansion
The HALEU cascade at the American Centrifuge Plant in Piketon, Ohio. (Photo: Centrus Energy)
American Centrifuge Operating, a subsidiary of Centrus Energy Corp., has formed a multiyear strategic collaboration with Fluor Corporation in which Fluor will serve as the engineering, procurement, and construction (EPC) contractor for Centrus’s expansion of its uranium enrichment facility in Piketon, Ohio. Fluor will lead the engineering and design aspects of the American Centrifuge Plant’s expansion, manage the supply chain and procurement of key materials and services, oversee construction at the site, and support the commissioning of new capacity.
Hyung-Kook Joo, Temitope A. Taiwo, Won Sik Yang, Hussein S. Khalil
Nuclear Technology | Volume 161 | Number 1 | January 2008 | Pages 8-26
Technical Paper | Reactor Safety | doi.org/10.13182/NT08-A3909
Articles are hosted by Taylor and Francis Online.
An evaluation of the Compact Nuclear Power Source (CNPS) experiments conducted at Los Alamos National Laboratory in the 1980s has been done using information available in the open literature. The MCNP4C Monte Carlo results for critical test configurations are in good agreement with the experimental values; the keff values are generally within 0.5% of the experimental values. The calculated total and differential rod worths and material worths were also found generally close to experimental values. These good results motivated the utilization of the experimental test data for the specification of two- and three-dimensional numerical benchmark cases that could be used for the verification and validation of core physics codes developed for Very High Temperature Reactor (VHTR) analysis, particularly the deterministic lattice and whole-core physics codes. To define the benchmark cases, the irregular arrangement of channels in the actual CNPS core was simplified to a regular Cartesian geometry arrangement in the benchmark cases, while preserving the important neutronics characteristics of the CNPS. The results of deterministic calculations using the HELIOS/DIF3D code package were compared to MCNP4C results to show the usefulness of the numerical benchmark cases.