ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
Fermi America looks to go public as NRC accepts COLA for AP1000s
Texas Tech University and Fermi America are now one step closer to realizing their massive vision for the Advanced Energy and Intelligence Campus in Amarillo, Texas, as the Nuclear Regulatory Commission has accepted the first two parts of its combined license application (COLA) for four Westinghouse AP1000s.
M. T. Farmer, K. R. Robb, M. W. Francis
Nuclear Technology | Volume 196 | Number 3 | December 2016 | Pages 446-460
Technical Paper | doi.org/10.13182/NT16-44
Articles are hosted by Taylor and Francis Online.
Lower head failure and corium-concrete interaction were predicted to occur at Fukushima Daiichi Unit 1 (1F1) by several different system-level code analyses, including MELCOR v2.1 and MAAP5. Although these codes capture a wide range of accident phenomena, they do not contain detailed models for ex-vessel core melt behavior. However, specialized codes exist for the analysis of ex-vessel melt spreading (e.g., MELTSPREAD) and long-term debris coolability (e.g., CORQUENCH). On this basis, an analysis has been carried out to further evaluate ex-vessel behavior for 1F1 using MELTSPREAD and CORQUENCH. The best-estimate melt pour conditions predicted by MELCOR v2.1 and MAAP5 were used as input. MELTSPREAD was then used to predict the spatially dependent melt conditions and the extent of spreading during relocation from the vessel. This information was then used as input for the long-term debris coolability analysis with CORQUENCH, which is reported in a companion paper.