ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Fluor to serve as EPC contractor for Centrus’s Piketon plant expansion
The HALEU cascade at the American Centrifuge Plant in Piketon, Ohio. (Photo: Centrus Energy)
American Centrifuge Operating, a subsidiary of Centrus Energy Corp., has formed a multiyear strategic collaboration with Fluor Corporation in which Fluor will serve as the engineering, procurement, and construction (EPC) contractor for Centrus’s expansion of its uranium enrichment facility in Piketon, Ohio. Fluor will lead the engineering and design aspects of the American Centrifuge Plant’s expansion, manage the supply chain and procurement of key materials and services, oversee construction at the site, and support the commissioning of new capacity.
Geethpriya Palaniswaamy, Sudarshan K. Loyalka
Nuclear Technology | Volume 160 | Number 2 | November 2007 | Pages 187-204
Technical Paper | Reactor Safety | doi.org/10.13182/NT160-187
Articles are hosted by Taylor and Francis Online.
Nuclear aerosols formed during nuclear reactor accidents or explosions evolve via natural transport processes as well as under the influence of engineered safety features. These aerosols can be hazardous and may pose risk to the public if released into the environment. Computations of their evolution, movement, and distribution involve the study of various processes such as coagulation, deposition, condensation, evaporation, etc., and are influenced by factors such as particle shape, charge, radioactivity, and spatial inhomogeneity. These many processes and factors make the numerical study of nuclear aerosol evolution computationally very complicated. The Direct Simulation Monte Carlo (DSMC) technique was developed to elucidate the role of various phenomena that influence the evolution of nuclear aerosols. This will allow, then, for an assessment of the limitations of other methods used at present. Coagulation, deposition, and source reinforcement processes for a multicomponent, aerosol dynamics problem have been explored. As a simple verification, the DSMC results were compared with analytical results for a single-component aerosol dynamics problem with coagulation and deposition processes. In addition, the DSMC results were compared against those obtained using the sectional method for several multicomponent test problems with the same component densities. It is clear from the present results that the assumption of a single mean density is not appropriate in such problems because of the complicated effect of component densities on the aerosol processes.