ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
Denver Airport may go nuclear
Colorado’s first nuclear power plant of the 21st century could be built at an unconventional site: the Denver International Airport (DEN).
In its mission to gain energy independence and become the greenest airport in the world, DEN has announced that it will conduct a feasibility study to determine the viability of building a small modular reactor on its 33,500-acre campus.
Kaushik Banerjee, Kevin R. Robb, Georgeta Radulescu, John M. Scaglione, John C. Wagner, Justin B. Clarity, Robert A. LeFebvre, Joshua L. Peterson
Nuclear Technology | Volume 195 | Number 2 | August 2016 | Pages 124-142
Technical Paper | doi.org/10.13182/NT15-112
Articles are hosted by Taylor and Francis Online.
A novel assessment has been completed to determine the unquantified and uncredited safety margins (i.e., the difference between the licensing-basis and as-loaded calculations) available in as-loaded spent nuclear fuel (SNF) casks. This assessment was performed as part of a broader effort to assess issues and uncertainties related to the continued safety of casks during extended storage and transportability following extended storage periods. Detailed analyses crediting the actual as-loaded cask inventory were performed for each of the casks at three decommissioned pressurized water reactor sites to determine their characteristics relative to regulatory safety criteria for criticality, thermal, and shielding performance. These detailed analyses were performed in an automated fashion by employing a comprehensive and integrated data and analysis tool—Used Nuclear Fuel-Storage, Transportation and Disposal Analysis Resource and Data System (UNF-ST&DARDS). Calculated uncredited criticality margins from 0.07 to almost 0.30 Δkeff were observed, calculated decay heat margins ranged from 4 to almost 22 kW (as of 2014), and significant uncredited transportation dose rate margins were also observed. The results demonstrate that at least for the casks analyzed here, significant uncredited safety margins are available that could potentially be used to compensate for SNF assembly and canister structural performance related uncertainties associated with long-term storage and subsequent transportation. The results also suggest that these inherent margins associated with how casks are loaded could support future changes in cask licensing to directly or indirectly credit the margins. Work continues to quantify the uncredited safety margins in the SNF casks loaded at other nuclear reactor sites.