ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Chris Wagner: The role of Eden Radioisotopes in the future of nuclear medicine
Chris Wagner has more than 40 years of experience in nuclear medicine, beginning as a clinical practitioner before moving into leadership roles at companies like Mallinckrodt (now Curium) and Nordion. His knowledge of both the clinical and the manufacturing sides of nuclear medicine laid the groundwork for helping to found Eden Radioisotopes, a start-up venture that intends to make diagnostic and therapeutic raw material medical isotopes like molybdenum-99 and lutetium-177.
R. S. Schley, K. L. Telschow, J. B. Walter, D. L. Cottle
Nuclear Technology | Volume 159 | Number 2 | August 2007 | Pages 202-207
Technical Paper | Materials for Nuclear Systems | doi.org/10.13182/NT07-A3865
Articles are hosted by Taylor and Francis Online.
This paper describes the first noncontact elastic vibration measurements of an object in a high gamma radiation field. Using a laser-coupled resonant ultrasound technique, the vibration modes of an Inconel hollow capped cylinder were measured as the gamma radiation field was increased to 104 Gy/h. This measurement technique allowed shifts in the resonant frequency of the sample's vibration modes to be tracked over a 170-h period. The vibration mode frequencies changed in a manner consistent with the temperature dependence of the elastic stiffness coefficients of the material. These results demonstrate the efficacy of the laser approach for real-time resonant ultrasound measurements in this severely hostile nuclear environment.