ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
X-energy raises $700M in latest funding round
Advanced reactor developer X-energy has announced that it has closed an oversubscribed Series D financing round of approximately $700 million. The funding proceeds are expected to be used to help continue the expansion of its supply chain and the commercial pipeline for its Xe-100 advanced small modular reactor and TRISO-X fuel, according the company.
R. S. Schley, K. L. Telschow, J. B. Walter, D. L. Cottle
Nuclear Technology | Volume 159 | Number 2 | August 2007 | Pages 202-207
Technical Paper | Materials for Nuclear Systems | doi.org/10.13182/NT07-A3865
Articles are hosted by Taylor and Francis Online.
This paper describes the first noncontact elastic vibration measurements of an object in a high gamma radiation field. Using a laser-coupled resonant ultrasound technique, the vibration modes of an Inconel hollow capped cylinder were measured as the gamma radiation field was increased to 104 Gy/h. This measurement technique allowed shifts in the resonant frequency of the sample's vibration modes to be tracked over a 170-h period. The vibration mode frequencies changed in a manner consistent with the temperature dependence of the elastic stiffness coefficients of the material. These results demonstrate the efficacy of the laser approach for real-time resonant ultrasound measurements in this severely hostile nuclear environment.