ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
October 2025
Fusion Science and Technology
Latest News
The journey of the U.S. fuel cycle
Craig Piercycpiercy@ans.org
While most big journeys begin with a clear objective, they rarely start with an exact knowledge of the route. When commissioning the Lewis and Clark expedition in 1803, President Thomas Jefferson didn’t provide specific “turn right at the big mountain” directions to the Corps of Discovery. He gave goal-oriented instructions: explore the Missouri River, find its source, search for a transcontinental water route to the Pacific, and build scientific and cultural knowledge along the way.
Jefferson left it up to Lewis and Clark to turn his broad, geopolitically motivated guidance into gritty reality.
Similarly, U.S. nuclear policy has begun a journey toward closing the U.S. nuclear fuel cycle. There is a clear signal of support for recycling from the Trump administration, along with growing bipartisan excitement in Congress. Yet the precise path remains unclear.
Emilian Popov, Boyan Ivanov, Kostadin N. Ivanov, Stilyana Mladenova
Nuclear Technology | Volume 158 | Number 3 | June 2007 | Pages 358-365
Technical Paper | Thermal Hydraulics | doi.org/10.13182/NT07-A3847
Articles are hosted by Taylor and Francis Online.
Flow rotation and mixing in a VVER-1000 reactor is investigated using two system codes with three-dimensional fluid-dynamics modeling capabilities (RELAP5-3D and TRACE) and a computational fluid-dynamics (CFD) code (FLUENT). Coarse-mesh models were developed for the system codes, and their applicability is evaluated using the test data as well as the detailed CFD results obtained. Two different temperature zone mapping schemes for comparison with the measured data are proposed and discussed.The test is very informative when used to examine the real loop mixing taking place at a nuclear reactor. The results can be used to improve code input data for correct simulation of the phenomenon. Correctly predicting the flow mixing is very important in regard to the prediction of the local three-dimensional feedback effects depending on the vessel mixing in coupled three-dimensional neutron-kinetic/thermal-hydraulic safety analysis of reactivity insertion accidents such as the main steam line break accident.