ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
Take steps on SNF and HLW disposal
Matt Bowen
With a new administration and Congress, it is time once again to ponder what will happen—if anything—on U.S. spent nuclear fuel and high-level waste management policy over the next few years. One element of the forthcoming discussion seems clear: The executive and legislative branches are eager to talk about recycling commercial SNF. Whatever the merits of doing so, it does not obviate the need for one or more facilities for disposal of remaining long-lived radionuclides. For that reason, making progress on U.S. disposal capabilities remains urgent, lest the associated radionuclide inventories simply be left for future generations to deal with.
In March, Rick Perry, who was secretary of energy during President Trump’s first administration, observed that during his tenure at the Department of Energy it became clear to him that any plan to move SNF “required some practical consent of the receiving state and local community.”1
Tsutomu Ikeno, Takeo Kajishima
Nuclear Technology | Volume 158 | Number 2 | May 2007 | Pages 249-260
Technical Paper | Nuclear Reactor Thermal Hydraulics | doi.org/10.13182/NT07-A3840
Articles are hosted by Taylor and Francis Online.
A computational model based on a large-eddy simulation (LES) technique was proposed to estimate turbulent mixing and pressure drop in subchannels with grid spacers. For an efficient treatment of this complex geometry, improvements were made to the LES technique coupled with an immersed boundary method: A one-equation dynamic subgrid scale model was introduced to account for the complex geometry without any artificial modification; the higher order accuracy was maintained by a consistent treatment of boundary conditions for velocity and pressure on solid walls. Computations were carried out for each of the convolute and periodic arrangements with two-step inclinations of the mixing vanes. The results reasonably reproduced the geometric effect in the turbulent mixing and drag coefficients for the flow, including unsteady separation and multiple vortices. The present computational model is useful for designing grid spacers: By coarser mesh, one can screen several candidates for spacer design; by finer mesh, more quantitative analysis is possible.