ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
November 2025
Latest News
Canada’s General Fusion to become publicly traded company
General Fusion has entered into a definitive business combination agreement with Spring Valley Acquisition Corp. (SVAC) that would make General Fusion the first publicly traded pure-play fusion firm, the company announced on January 22. The business combination is projected to be completed in mid-2026.
Emilio Baglietto, Hisashi Ninokata
Nuclear Technology | Volume 158 | Number 2 | May 2007 | Pages 237-248
Technical Paper | Nuclear Reactor Thermal Hydraulics | doi.org/10.13182/NT07-A3839
Articles are hosted by Taylor and Francis Online.
An improved quadratic nonlinear eddy viscosity model (NLEVM) is introduced that respects the constraints of realizability for calculation of detailed coolant velocity and temperature distributions inside tight lattice fuel bundles. The model adopts an optimized low-Reynolds formulation based on direct numerical simulation data, combined with an enhanced nonlinear stress-strain relationship to correctly capture the anisotropy of the flow up to the solid wall. The capabilities of the model are first assessed on the prediction of fully developed flow inside triangular lattice bundles; it is shown how the ability to correctly reproduce the turbulent-driven secondary flow enables the model to accurately reproduce wall shear stress and velocity distributions inside the bundle. The model is applied to the evaluation of the thermal-hydraulic performances of novel fuel designs, discussing potential advantages and limitations of the newly proposed solutions.