ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Modernizing I&C for operations and maintenance, one phase at a time
The two reactors at Dominion Energy’s Surry plant are among the oldest in the U.S. nuclear fleet. Yet when the plant celebrated its 50th anniversary in 2023, staff could raise a toast to the future. Surry was one of the first plants to file a subsequent license renewal (SLR) application, and in May 2021, it became official: the plant was licensed to operate for a full 80 years, extending its reactors’ lifespans into 2052 and 2053.
Allen G. Croff, Steven L. Krahn
Nuclear Technology | Volume 194 | Number 2 | May 2016 | Pages 271-280
Technical Paper | doi.org/10.13182/NT15-46
Articles are hosted by Taylor and Francis Online.
This paper compares the radiotoxicity of thorium-based and uranium-based spent nuclear fuels and reprocessing wastes to inform evaluation of whether thorium-based fuels are significantly less radiotoxic than uranium-based fuels, as has been claimed at times in the technical literature. A consistent approach for calculating the radiotoxicity is established for four oxide fuel types in a pressurized water reactor: low-enrichment uranium, uranium with plutonium fissile material, thorium with 233U fissile material, and thorium with plutonium fissile material. The results of the calculations are presented to display the radiotoxicity trends and are analyzed to determine (a) what underlies the indicated radiotoxicity trends for decay times from 1 year to 20 million years and (b) factors that may have led to erroneous conclusions concerning the comparative radiotoxicity of thorium- and uranium-based fuels. The overall conclusion is that the ingestion radiotoxicity of thorium-based fuels containing 233U or plutonium fissile materials is similar to the radiotoxicity of uranium-based fuels containing 235U or plutonium fissile materials but that within this overall similarity there are significant differences in radiotoxicity in specific eras during decay.