ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
ANS announces 2025 Presidential Citations
One of the privileges of being president of the American Nuclear Society is awarding Presidential Citations to individuals who have demonstrated outstanding effort in some manner for the benefit of ANS or the nuclear community at large. Citations are conferred twice each year, at the Annual and Winter Meetings.
ANS President Lisa Marshall has named this season’s recipients, who will receive recognition at the upcoming Annual Conference in Chicago during the Special Session on Tuesday, June 17.
Allen G. Croff, Steven L. Krahn
Nuclear Technology | Volume 194 | Number 2 | May 2016 | Pages 271-280
Technical Paper | doi.org/10.13182/NT15-46
Articles are hosted by Taylor and Francis Online.
This paper compares the radiotoxicity of thorium-based and uranium-based spent nuclear fuels and reprocessing wastes to inform evaluation of whether thorium-based fuels are significantly less radiotoxic than uranium-based fuels, as has been claimed at times in the technical literature. A consistent approach for calculating the radiotoxicity is established for four oxide fuel types in a pressurized water reactor: low-enrichment uranium, uranium with plutonium fissile material, thorium with 233U fissile material, and thorium with plutonium fissile material. The results of the calculations are presented to display the radiotoxicity trends and are analyzed to determine (a) what underlies the indicated radiotoxicity trends for decay times from 1 year to 20 million years and (b) factors that may have led to erroneous conclusions concerning the comparative radiotoxicity of thorium- and uranium-based fuels. The overall conclusion is that the ingestion radiotoxicity of thorium-based fuels containing 233U or plutonium fissile materials is similar to the radiotoxicity of uranium-based fuels containing 235U or plutonium fissile materials but that within this overall similarity there are significant differences in radiotoxicity in specific eras during decay.