ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Hanford begins removing waste from 24th single-shell tank
The Department of Energy’s Office of Environmental Management said crews at the Hanford Site near Richland, Wash., have started retrieving radioactive waste from Tank A-106, a 1-million-gallon underground storage tank built in the 1950s.
Tank A-106 will be the 24th single-shell tank that crews have cleaned out at Hanford, which is home to 177 underground waste storage tanks: 149 single-shell tanks and 28 double-shell tanks. Ranging from 55,000 gallons to more than 1 million gallons in capacity, the tanks hold around 56 million gallons of chemical and radioactive waste resulting from plutonium production at the site.
V. Dykin, I. Pázsit
Nuclear Technology | Volume 193 | Number 3 | March 2016 | Pages 404-415
Technical Paper | doi.org/10.13182/NT15-71
Articles are hosted by Taylor and Francis Online.
The derivation of the point-kinetic component of the neutron noise in two-group diffusion theory in molten salt reactors (MSRs), based on different techniques, is discussed. First, the point-kinetic component is calculated by projecting the corresponding full space-frequency–dependent solution onto the static adjoint. Then, following the standard procedure in reactor physics, the point-kinetic solution is determined by solving the linearized point-kinetic equations. Both results are thereafter analyzed and compared quantitatively. Such a comparison clearly indicates that the solution obtained by the conventional derivation, i.e., from the point-kinetic equations, significantly differs from the exact one and is not able to reproduce certain features of the latter. Similar discrepancies between the two methods were also pointed out and confirmed earlier in one-group MSR calculations.