ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
May 2025
Fusion Science and Technology
Latest News
The 2025 ANS election results are in!
Spring marks the passing of the torch for American Nuclear Society leadership. During this election cycle, ANS members voted for the newest vice president/president-elect, treasurer, and six board of director positions (four U.S., one non-U.S., one student). New professional division leadership was also decided on in this election, which opened February 25 and closed April 15. About 21 percent of eligible members of the Society voted—a similar turnout to last year.
Seyed Mohsen Hoseyni, Mohammad Pourgol-Mohammad
Nuclear Technology | Volume 193 | Number 3 | March 2016 | Pages 341-363
Technical Paper | doi.org/10.13182/NT15-47
Articles are hosted by Taylor and Francis Online.
The influence of model uncertainty is most pronounced in areas of limited knowledge and large uncertainties like severe accident (SA) calculations. Lack of a systematic methodology for this purpose makes this assessment difficult. This paper describes the treatment of model uncertainty in SA analysis for nuclear power plants, which is an area that has had limited past research. This paper aims at a systematic subject assessment. By review of available approaches, a methodology is structured to deal with alternative modeling options in SA code structure. The proposed methodology comprises three phases: the probability of each model is estimated (phase 1), the input uncertainty is quantified (phase 2), and the Bayesian model averaging technique is utilized to integrate the calculations of alternative models into the SA code (phase 3). Through this process, the degree of belief is quantified for the performance of alternative code models. The methodology evaluates available information and data from experiments and code predictions. The application of the proposed methodology is demonstrated on fission product release models for the LP-FP-2 SA experiment of the LOFT (Loss-of-Fluid Test) facility.