ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
Wright officially sworn in for third term at the NRC
The Nuclear Regulatory Commission recently announced that David Wright, after being nominated by President Trump and confirmed by the Senate, was ceremonially sworn in as NRC chair on September 8.
This swearing in comes more than a month after Wright began his third term on the commission; he began leading as chair July 31. His term will conclude on June 30, 2030.
Stojan Petelin, Borut Mavko, Bostjan Koncar, Yassin A. Hassan
Nuclear Technology | Volume 158 | Number 1 | April 2007 | Pages 56-68
Technical Paper | Best Estimate Methods | doi.org/10.13182/NT07-A3824
Articles are hosted by Taylor and Francis Online.
This paper provides a scaling methodology that was applied for scaling of the BETHSY integral test facility to the real nuclear power plant (NPP). The similarity of physical phenomena between the BETHSY experimental facility and the scaled-up model (representation of the real NPP) was analyzed on the small-break loss-of-coolant accident (SBLOCA) scenario. A comprehensive numerical analysis using the RELAP5 thermal-hydraulic code was performed to evaluate the optimal scaling-up of the BETHSY facility to the real NPP. In order to investigate the phenomenological scaling-up basis, two enlarged RELAP5 input models were constructed, differing in scaling criteria for the primary cooling system: proportional volume scaling and scaling based on the Froude number. A better agreement with the physical phenomena of the SBLOCA experiment was achieved in the case of proportional volume scaling. In addition, scaling of heat structures was also analyzed. It was shown that the best predictions of the transient phenomena were obtained when the heat structures were scaled according to the tensile stress criterion.