ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Webinar: MC&A and safety in advanced reactors in focus
Towell
Russell
Prasad
The American Nuclear Society’s Nuclear Nonproliferation Policy Division recently hosted a webinar on updating material control and accounting (MC&A) and security regulations for the evolving field of advanced reactors.
Moderator Shikha Prasad (CEO, Srijan LLC) was joined by two presenters, John Russell and Lester Towell, who looked at how regulations that were historically developed for traditional light water reactors will apply to the next generation of nuclear technology and what changes need to be made.
Byong-Jo Yun, Dong-Jin Euh, Chul-Hwa Song
Nuclear Technology | Volume 156 | Number 1 | October 2006 | Pages 56-68
Technical Paper | Thermal Hydraulics | doi.org/10.13182/NT06-A3773
Articles are hosted by Taylor and Francis Online.
Hydraulic phenomena in the downcomer of a conventional pressurized water reactor have an important effect on the transient evaluations of a postulated large-break loss-of-coolant accident (LBLOCA). In particular, safety analyses using best-estimate codes show that downcomer boiling is one of the important phenomena in the postulated LBLOCA because it can degrade the hydraulic head in the downcomer and consequently affect the reflood flow rate for core cooling. To experimentally identify the thermal-hydraulic behavior in the downcomer, a downcomer-boiling test facility was constructed for simulating downcomer boiling in the reflood phase of a postulated LBLOCA.The test facility was designed by adopting a full-pressure, full-height, and full-size downcomer-gap approach but with the circumferential length reduced 47.08-fold. The test was divided into two phases: (a) visual observation and acquisition of the global two-phase flow parameters and (b) measurement of the local two-phase flow parameters.This paper presents the test results from Phase I. The major measured parameters were the axial void fraction and the fluid temperatures and pressures in the test section. The measured data were used to evaluate a safety analysis code, MARS 2.1b, to investigate its modeling accuracy and identify weaknesses of the thermal-hydraulic models therein.