ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
INL makes a case for eliminating ALARA and setting higher dose limits
A report just released by Idaho National Laboratory reviews decades of radiation protection standards and research on the health effects of low-dose radiation and recommends that the current U.S. annual occupational dose limit of 5,000 mrem be maintained without applying ALARA—the “as low as reasonably achievable” regulatory concept first introduced in 1971—below that threshold.
Noting that epidemiological studies “have consistently failed to demonstrate statistically significant health effects at doses below 10,000 mrem delivered at low dose rates,” the report also recommends “future consideration of increasing this limit to 10,000 mrem/year with appropriate cumulative-dose constraints.”
O. Petit, E. Dumonteil
Nuclear Technology | Volume 192 | Number 3 | December 2015 | Pages 259-263
Technical Paper | Radiation Transport and Protection | doi.org/10.13182/NT14-128
Articles are hosted by Taylor and Francis Online.
Monte Carlo simulations of nuclear instrumentation configurations generally need to be run in a full analog transport mode. Up to Version 9 of the Monte Carlo code TRIPOLI-4®, the transport between two consecutive neutron collisions is analog if no variance reduction technique is requested by the user, but the collision itself is sampled in a nonanalog way. This paper presents the first implementation of a full analog neutron transport mode in TRIPOLI-4. This option concerns only fixed-source simulations.
Details on the modifications implemented in the code are provided: The analog sampling of neutron interactions and the particular cases of fission and scattering reactions with multiple outgoing neutrons are addressed.
Preliminary verification tests are provided, and results from nonanalog and analog neutron transport in a simple configuration of a pressurized water reactor fuel assembly are compared. An example of application to the simulation of the NUCIFER detector is also provided. This experiment, located in Saclay, France, next to the OSIRIS experimental reactor, is dedicated to reactor antineutrino detection, addressing both nonproliferation considerations and fundamental physics concerns. Antineutrinos emitted by fission reactions in OSIRIS are detected through the inverse beta decay reaction, producing a positron and a neutron. An analog TRIPOLI-4 simulation allowed us to calculate the distribution of neutron capture times on gadolinium nuclei.