ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
R. H. Renshaw, S. Roy
Nuclear Technology | Volume 55 | Number 2 | November 1981 | Pages 371-382
Technical Paper | Materials | doi.org/10.13182/NT55-371
Articles are hosted by Taylor and Francis Online.
Twelve steam generators in three nuclear power plants were damaged during manufacture by postweld stress relief heat treatment. This damage was detected after all were installed, but before any of the plants became operational. The steam generators were rebuilt, in situ, by complete replacement of the internals and tubing. The damage caused by heat treatment consisted of indentation of the tubing by distortion of the tube support plates. The indentations produced points of local high stress in the tubing, causing a potential for stress corrosion cracking. The indentations and the distortion of the support plates also prevented free axial motion of the tubing through the support plates in service, and it is thought that some tubes would have failed in service for this reason. The rebuilding program permitted design changes to accommodate technical information accumulated since the vessels were designed in 1975. These design changes principally were a strengthening of internal structural members to resist seismic forces and fluid forces predicted for pipe breaks, substitution of stainless steel for carbon steel tube support plates, a more elastic U-bend restraint design, increase of some clearances to better tolerate in-service thermal distortion, and a redesigned emergency water injection system to promote thermal syphoning of the reactor coolant under accident conditions. New methods of tube expansion, tube-to-tube-sheet welding, and heat treatment of the tubing were developed to facilitate field installation. The work required 15 months. It was planned and executed so that the delays to the erection programs of the plants were minimized. The final result was a significant improvement in the design of the steam generators, and an accumulation of technology that may be useful if steam generators should require in-service retubing.