ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
R. H. Renshaw, S. Roy
Nuclear Technology | Volume 55 | Number 2 | November 1981 | Pages 371-382
Technical Paper | Materials | doi.org/10.13182/NT55-371
Articles are hosted by Taylor and Francis Online.
Twelve steam generators in three nuclear power plants were damaged during manufacture by postweld stress relief heat treatment. This damage was detected after all were installed, but before any of the plants became operational. The steam generators were rebuilt, in situ, by complete replacement of the internals and tubing. The damage caused by heat treatment consisted of indentation of the tubing by distortion of the tube support plates. The indentations produced points of local high stress in the tubing, causing a potential for stress corrosion cracking. The indentations and the distortion of the support plates also prevented free axial motion of the tubing through the support plates in service, and it is thought that some tubes would have failed in service for this reason. The rebuilding program permitted design changes to accommodate technical information accumulated since the vessels were designed in 1975. These design changes principally were a strengthening of internal structural members to resist seismic forces and fluid forces predicted for pipe breaks, substitution of stainless steel for carbon steel tube support plates, a more elastic U-bend restraint design, increase of some clearances to better tolerate in-service thermal distortion, and a redesigned emergency water injection system to promote thermal syphoning of the reactor coolant under accident conditions. New methods of tube expansion, tube-to-tube-sheet welding, and heat treatment of the tubing were developed to facilitate field installation. The work required 15 months. It was planned and executed so that the delays to the erection programs of the plants were minimized. The final result was a significant improvement in the design of the steam generators, and an accumulation of technology that may be useful if steam generators should require in-service retubing.