ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Hanford begins removing waste from 24th single-shell tank
The Department of Energy’s Office of Environmental Management said crews at the Hanford Site near Richland, Wash., have started retrieving radioactive waste from Tank A-106, a 1-million-gallon underground storage tank built in the 1950s.
Tank A-106 will be the 24th single-shell tank that crews have cleaned out at Hanford, which is home to 177 underground waste storage tanks: 149 single-shell tanks and 28 double-shell tanks. Ranging from 55,000 gallons to more than 1 million gallons in capacity, the tanks hold around 56 million gallons of chemical and radioactive waste resulting from plutonium production at the site.
Yi-Kang Lee, Emeric Brun, Xavier Alexandre
Nuclear Technology | Volume 191 | Number 3 | September 2015 | Pages 234-245
Technical Paper | Fission Reactors | doi.org/10.13182/NT14-85
Articles are hosted by Taylor and Francis Online.
To support the development of Sodium-cooled Fast Reactors (SFRs) of Generation IV nuclear energy systems and to study the use of the TRIPOLI-4® Monte Carlo code and the JEFF-3.1.1 nuclear data library on the core neutronics of large fast neutron reactors, in this work two recent Organisation for Economic Co-operation and Development/Nuclear Energy Agency (OECD/NEA) computational benchmarks of two 3600-MW(thermal) SFRs were analyzed with the continuous-energy TRIPOLI-4 code. Both a mixed oxide [(U,Pu)O2] core and a carbide [(U,Pu)C] core were investigated. Under two different fast neutron spectra, the reactor physics parameters—Keff, βeff (effective delayed neutron fraction), sodium void worth, Doppler constant, control rod worth, and core power distribution—were calculated for the beginning of equilibrium cycle condition. Both the pin-by-pin heterogeneous and fuel assembly–level homogeneous calculation models were applied in the whole-core simulation in order to evaluate their impact on the calculation results of SFR reactor physics parameters. The ENDF/B-VII.0 data library from the evaluation was also used with TRIPOLI-4 to study its impact on the SFR core reactivity and the boron carbide control rod worth. Using the mesh tally option, the energy deposition tally, and the upgraded display tool of TRIPOLI-4, radial power distribution and core power maps of the two cores were calculated and compared.