ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
INL makes a case for eliminating ALARA and setting higher dose limits
A report just released by Idaho National Laboratory reviews decades of radiation protection standards and research on the health effects of low-dose radiation and recommends that the current U.S. annual occupational dose limit of 5,000 mrem be maintained without applying ALARA—the “as low as reasonably achievable” regulatory concept first introduced in 1971—below that threshold.
Noting that epidemiological studies “have consistently failed to demonstrate statistically significant health effects at doses below 10,000 mrem delivered at low dose rates,” the report also recommends “future consideration of increasing this limit to 10,000 mrem/year with appropriate cumulative-dose constraints.”
Yi-Kang Lee, Emeric Brun, Xavier Alexandre
Nuclear Technology | Volume 191 | Number 3 | September 2015 | Pages 234-245
Technical Paper | Fission Reactors | doi.org/10.13182/NT14-85
Articles are hosted by Taylor and Francis Online.
To support the development of Sodium-cooled Fast Reactors (SFRs) of Generation IV nuclear energy systems and to study the use of the TRIPOLI-4® Monte Carlo code and the JEFF-3.1.1 nuclear data library on the core neutronics of large fast neutron reactors, in this work two recent Organisation for Economic Co-operation and Development/Nuclear Energy Agency (OECD/NEA) computational benchmarks of two 3600-MW(thermal) SFRs were analyzed with the continuous-energy TRIPOLI-4 code. Both a mixed oxide [(U,Pu)O2] core and a carbide [(U,Pu)C] core were investigated. Under two different fast neutron spectra, the reactor physics parameters—Keff, βeff (effective delayed neutron fraction), sodium void worth, Doppler constant, control rod worth, and core power distribution—were calculated for the beginning of equilibrium cycle condition. Both the pin-by-pin heterogeneous and fuel assembly–level homogeneous calculation models were applied in the whole-core simulation in order to evaluate their impact on the calculation results of SFR reactor physics parameters. The ENDF/B-VII.0 data library from the evaluation was also used with TRIPOLI-4 to study its impact on the SFR core reactivity and the boron carbide control rod worth. Using the mesh tally option, the energy deposition tally, and the upgraded display tool of TRIPOLI-4, radial power distribution and core power maps of the two cores were calculated and compared.