ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
Nuclear and Emerging Technologies for Space (NETS 2025)
May 4–8, 2025
Huntsville, AL|Huntsville Marriott and the Space & Rocket Center
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Sellafield waste vault yields 1960s-era finds
A 1960s Electrolux vacuum cleaner was among the more unusual items workers removed from one of the world’s oldest nuclear waste stores at the United Kingdom’s Sellafield nuclear site.
Christoffer Gottlieb, Vasily Arzhanov, Waclaw Gudowski, Ninos Garis
Nuclear Technology | Volume 155 | Number 1 | July 2006 | Pages 67-77
Technical Paper | Nuclear Plant Operations and Control | doi.org/10.13182/NT06-A3746
Articles are hosted by Taylor and Francis Online.
Support vector machines (SVMs), a relatively new paradigm in statistical learning theory, are studied for their potential to recognize transient behavior of detector signals corresponding to various accident events at nuclear power plants (NPPs). Transient classification is a major task for any computer-aided system for recognition of various malfunctions. The ability to identify the state of operation or events occurring at an NPP is crucial so that personnel can select adequate response actions. The Modular Accident Analysis Program, version 4 (MAAP4) is a program that can be used to model various normal and abnormal events in an NPP. This study uses MAAP signals describing various loss-of-coolant accidents in boiling water reactors. The simulated sensor readings corresponding to these events have been used to train and test SVM classifiers. SVM calculations have demonstrated that they can produce classifiers with good generalization ability for our data. This in turn indicates that SVMs show promise as classifiers for the learning problem of identifying transients.