ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Fluor to serve as EPC contractor for Centrus’s Piketon plant expansion
The HALEU cascade at the American Centrifuge Plant in Piketon, Ohio. (Photo: Centrus Energy)
American Centrifuge Operating, a subsidiary of Centrus Energy Corp., has formed a multiyear strategic collaboration with Fluor Corporation in which Fluor will serve as the engineering, procurement, and construction (EPC) contractor for Centrus’s expansion of its uranium enrichment facility in Piketon, Ohio. Fluor will lead the engineering and design aspects of the American Centrifuge Plant’s expansion, manage the supply chain and procurement of key materials and services, oversee construction at the site, and support the commissioning of new capacity.
T. H. Trumbull, D. R. Harris
Nuclear Technology | Volume 154 | Number 3 | June 2006 | Pages 350-360
Technical Paper | Radiation Protection | doi.org/10.13182/NT06-A3739
Articles are hosted by Taylor and Francis Online.
The effect of material homogenization on the calculated gamma-ray dose rate was studied for several arrangements of typical pressurized water reactor (PWR) spent fuel pins in an air medium using the Monte Carlo code MCNP. The models analyzed increased in geometric complexity, beginning with a single fuel pin; progressing to small lattices, i.e., 3 × 3, 5 × 5, and 7 × 7 fuel pins; and culminating with a full 17 × 17 pin PWR bundle analysis. The fuel pin dimensions and compositions were taken directly from a previous study, and efforts were made to parallel this study by specifying identical flux-to-dose functions and gamma-ray source spectra.The analysis shows two competing components to the overall effect of material homogenization on the calculated dose rate. Homogenization of pin lattices tends to lower the effect of radiation channeling but increase the effect of source redistribution. Depending on the size of the lattice and the location of the detectors, the net effect of material homogenization on the dose rate can be insignificant, or it can range from a 6% decrease to a 35% increase relative to the detailed geometry model.