ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 8–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
November 2025
Fusion Science and Technology
Latest News
White House taps Douglas Weaver for NRC role
The Trump White House has nominated seasoned nuclear regulatory expert Douglas Weaver for a commissioner seat on the Nuclear Regulatory Commission. If confirmed, Weaver would fill the seat vacated by NRC commissioner Annie Caputo, who resigned in July.
Weaver’s nomination was sent earlier today to the Senate Environment and Public Works Committee. If confirmed, he would finish the remainder of Caputo’s term, which expires June 30, 2026.
Vaclav Dostal, Pavel Hejzlar, Michael J. Driscoll
Nuclear Technology | Volume 154 | Number 3 | June 2006 | Pages 265-282
Technical Paper | Fission Reactors | doi.org/10.13182/NT154-265
Articles are hosted by Taylor and Francis Online.
Supercritical carbon dioxide cycles are a promising power conversion option for future nuclear reactors operating with a reactor outlet temperature in the range of 550 to 650°C. The recompression cycle version operating with ~20-MPa turbine inlet pressure achieves similar cycle efficiencies as helium Brayton cycles operating at ~250°C higher turbine inlet temperature. The simplicity and high efficiency of the recompression cycle makes it a prime option from among the family of supercritical carbon dioxide cycles. The elimination of the need for intercooling due to the small required compressor work (because of the high density close to the critical point) makes the recompression cycle even simpler than helium Brayton cycles, which require intercooling to achieve attractive efficiencies. The high operating pressure reduces the size of the plant components significantly, making it a promising power cycle for low-cost modularized electricity-generating nuclear systems. However, the real gas behavior that improves the cycle efficiency presents a challenge for part-load operation. The traditional inventory control used for helium Brayton cycles may not be feasible. Bypass control is thus the prime option for part-load operation, making the cycle less efficient than during base-load operation. Since nuclear power plants are operated almost exclusively in base load, this drawback is not a disqualifying blemish.