ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
From Capitol Hill: Nuclear is back, critical for America’s energy future
The U.S. House Energy and Commerce Subcommittee on Energy convened its first hearing of the year, “American Energy Dominance: Dawn of the New Nuclear Era,” on January 7, where lawmakers and industry leaders discussed how nuclear energy can help meet surging electricity demand driven by artificial intelligence, data centers, advanced manufacturing, and national security needs.
L. Cantrel, P. March
Nuclear Technology | Volume 154 | Number 2 | May 2006 | Pages 170-185
Technical Paper | Reactor Safety | doi.org/10.13182/NT06-A3726
Articles are hosted by Taylor and Francis Online.
Iodine is a fission product of major importance in a severe reactor accident because volatile species exist under reactor containment conditions. Radiolytic oxidation of iodide ions is an important source of volatile iodine species. The SISYPHE tests provide an experimental database of prime importance for the study of the mass transfer between the sump and the atmosphere of a containment building under natural convection and in an evaporating flow regime. This phenomenon greatly impacts the airborne iodine concentrations. The two main effects of evaporating conditions are to increase the kinetics of transfer from the liquid to the gaseous phase and to change the steady-state iodine concentrations. The well-known two-film model has been modified to extend to these types of conditions. The agreement between the experimental results and modeling is satisfactory. However, when applied to typical reactor conditions, the impact of this improved modeling on gaseous iodine concentration is not as strong as other phenomena; for example, uncertainties remain concerning organic iodide production mechanisms. Correlations enabling the calculation of individual mass transfer coefficients for the liquid and the gas phases are proposed. The values resulting from these correlations agree well with those obtained from the test interpretations.