ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Webinar: MC&A and safety in advanced reactors in focus
Towell
Russell
Prasad
The American Nuclear Society’s Nuclear Nonproliferation Policy Division recently hosted a webinar on updating material control and accounting (MC&A) and security regulations for the evolving field of advanced reactors.
Moderator Shikha Prasad (CEO, Srijan LLC) was joined by two presenters, John Russell and Lester Towell, who looked at how regulations that were historically developed for traditional light water reactors will apply to the next generation of nuclear technology and what changes need to be made.
L. Cantrel, P. March
Nuclear Technology | Volume 154 | Number 2 | May 2006 | Pages 170-185
Technical Paper | Reactor Safety | doi.org/10.13182/NT06-A3726
Articles are hosted by Taylor and Francis Online.
Iodine is a fission product of major importance in a severe reactor accident because volatile species exist under reactor containment conditions. Radiolytic oxidation of iodide ions is an important source of volatile iodine species. The SISYPHE tests provide an experimental database of prime importance for the study of the mass transfer between the sump and the atmosphere of a containment building under natural convection and in an evaporating flow regime. This phenomenon greatly impacts the airborne iodine concentrations. The two main effects of evaporating conditions are to increase the kinetics of transfer from the liquid to the gaseous phase and to change the steady-state iodine concentrations. The well-known two-film model has been modified to extend to these types of conditions. The agreement between the experimental results and modeling is satisfactory. However, when applied to typical reactor conditions, the impact of this improved modeling on gaseous iodine concentration is not as strong as other phenomena; for example, uncertainties remain concerning organic iodide production mechanisms. Correlations enabling the calculation of individual mass transfer coefficients for the liquid and the gas phases are proposed. The values resulting from these correlations agree well with those obtained from the test interpretations.