ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Hanford begins removing waste from 24th single-shell tank
The Department of Energy’s Office of Environmental Management said crews at the Hanford Site near Richland, Wash., have started retrieving radioactive waste from Tank A-106, a 1-million-gallon underground storage tank built in the 1950s.
Tank A-106 will be the 24th single-shell tank that crews have cleaned out at Hanford, which is home to 177 underground waste storage tanks: 149 single-shell tanks and 28 double-shell tanks. Ranging from 55,000 gallons to more than 1 million gallons in capacity, the tanks hold around 56 million gallons of chemical and radioactive waste resulting from plutonium production at the site.
Kyung Mo Kim, Seung Won Lee, In Cheol Bang
Nuclear Technology | Volume 190 | Number 3 | June 2015 | Pages 345-358
Technical Paper | Thermal Hydraulics | doi.org/10.13182/NT14-82
Articles are hosted by Taylor and Francis Online.
Quenching experiments were conducted to investigate the effect of deposition of SiC and graphene oxide (GO) nanoparticles on heat transfer during rapid cooling in vertical tubes. Temperature histories during quenching were measured for each test section to confirm the effect of the nanoparticle-coated layer on quenching performance. Boiling curves for each test were obtained by using the inverse heat transfer method. Quenching performance was enhanced ∼20% to 31% for nanoparticle-coated tubes compared to the bare tube. Scanning electron microscope images of the inner surfaces of the tubes following the experiments were acquired, and the contact angles were measured to observe the effect of surface structures and wettability on quenching performance. In the case of tubes coated with GO nanoparticles for 900 s, quenching performance and critical heat flux (CHF) were enhanced although the contact angle increased. To confirm the surface effect on the enhanced quenching performance and CHF of GO nanoparticle–coated tubes, FC-72 refrigerant was used as the working fluid of the quenching experiment to reduce the wettability effect on the heat transfer.