ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
The U.S. Million Person Study of Low-Dose-Rate Health Effects
There is a critical knowledge gap regarding the health consequences of exposure to radiation received gradually over time. While there is a plethora of studies on the risks of adverse outcomes from both acute and high-dose exposures, including the landmark study of atomic bomb survivors, these are not characteristic of the chronic exposure to low-dose radiation encountered in occupational and public settings. In addition, smaller cohorts have limited numbers leading to reduced statistical power.
Kyung Mo Kim, Seung Won Lee, In Cheol Bang
Nuclear Technology | Volume 190 | Number 3 | June 2015 | Pages 345-358
Technical Paper | Thermal Hydraulics | doi.org/10.13182/NT14-82
Articles are hosted by Taylor and Francis Online.
Quenching experiments were conducted to investigate the effect of deposition of SiC and graphene oxide (GO) nanoparticles on heat transfer during rapid cooling in vertical tubes. Temperature histories during quenching were measured for each test section to confirm the effect of the nanoparticle-coated layer on quenching performance. Boiling curves for each test were obtained by using the inverse heat transfer method. Quenching performance was enhanced ∼20% to 31% for nanoparticle-coated tubes compared to the bare tube. Scanning electron microscope images of the inner surfaces of the tubes following the experiments were acquired, and the contact angles were measured to observe the effect of surface structures and wettability on quenching performance. In the case of tubes coated with GO nanoparticles for 900 s, quenching performance and critical heat flux (CHF) were enhanced although the contact angle increased. To confirm the surface effect on the enhanced quenching performance and CHF of GO nanoparticle–coated tubes, FC-72 refrigerant was used as the working fluid of the quenching experiment to reduce the wettability effect on the heat transfer.