ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
November 2025
Latest News
ORNL to partner with Type One, UTK on fusion facility
Yesterday, Oak Ridge National Laboratory announced that it is in the process of partnering with Type One Energy and the University of Tennessee–Knoxville. That partnership will have one primary goal: to establish a high-heat flux facility (HHF) at the Tennessee Valley Authority’s Bull Run Energy Complex in Clinton, Tenn.
Kyung Mo Kim, Seung Won Lee, In Cheol Bang
Nuclear Technology | Volume 190 | Number 3 | June 2015 | Pages 345-358
Technical Paper | Thermal Hydraulics | doi.org/10.13182/NT14-82
Articles are hosted by Taylor and Francis Online.
Quenching experiments were conducted to investigate the effect of deposition of SiC and graphene oxide (GO) nanoparticles on heat transfer during rapid cooling in vertical tubes. Temperature histories during quenching were measured for each test section to confirm the effect of the nanoparticle-coated layer on quenching performance. Boiling curves for each test were obtained by using the inverse heat transfer method. Quenching performance was enhanced ∼20% to 31% for nanoparticle-coated tubes compared to the bare tube. Scanning electron microscope images of the inner surfaces of the tubes following the experiments were acquired, and the contact angles were measured to observe the effect of surface structures and wettability on quenching performance. In the case of tubes coated with GO nanoparticles for 900 s, quenching performance and critical heat flux (CHF) were enhanced although the contact angle increased. To confirm the surface effect on the enhanced quenching performance and CHF of GO nanoparticle–coated tubes, FC-72 refrigerant was used as the working fluid of the quenching experiment to reduce the wettability effect on the heat transfer.