ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Chris Wagner: The role of Eden Radioisotopes in the future of nuclear medicine
Chris Wagner has more than 40 years of experience in nuclear medicine, beginning as a clinical practitioner before moving into leadership roles at companies like Mallinckrodt (now Curium) and Nordion. His knowledge of both the clinical and the manufacturing sides of nuclear medicine laid the groundwork for helping to found Eden Radioisotopes, a start-up venture that intends to make diagnostic and therapeutic raw material medical isotopes like molybdenum-99 and lutetium-177.
Michel Amblard, Jean-Marc Delhaye, Karine Froment, Jean-Marie Seiler, Bruno Tourniaire
Nuclear Technology | Volume 153 | Number 3 | March 2006 | Pages 315-325
Technical Paper | Thermal Hydraulics | doi.org/10.13182/NT06-A3710
Articles are hosted by Taylor and Francis Online.
In the ANAIS experiments, water was injected as a jet or a spray at a given temperature and a given flow rate onto a superheated (~1600°C) molten steel layer for an imposed value of the heat rate delivered to the steel layer by induction heating. At the beginning of a test, water was injected during a few seconds with a high flow rate. Thereafter, the flow rate was decreased to evacuate the thermal power under steady-state conditions. The heat generation rate in the metal was maintained during the water injection at ~1 MW/m2, which represents a typical reactor situation. The test results showed that the steel-water heat transfer led to different final situations depending on the injection mode and water velocity. In addition, the water-cooling power was rather high at the very beginning of the transient and comparable to the heat rate delivered to the metal layer in steady-state conditions. Also, it was observed that no steam explosion occurred in any case, and that a solid layer always formed at the steel free-surface.