ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
Recent surveys confirm high levels of U.S. nuclear support
Surveys have consistently indicated that public support in the United States for the use of nuclear energy has been increasing in recent years. Four recent surveys continue to suggest that near-record-high numbers of Americans support nuclear energy. However, the survey results differ—sometimes widely—in the details of their findings.
Y. Ronen, M. Aboudy, D. Regev
Nuclear Technology | Volume 153 | Number 2 | February 2006 | Pages 224-233
Technical Note | Fuel Cycle and Management | doi.org/10.13182/NT06-A3702
Articles are hosted by Taylor and Francis Online.
There is growing interest in the use of 242mAm as a nuclear fuel. Since the thermal absorption cross section of 242mAm is very high (a = 8950 b), the best way to obtain 242mAm is by the capture of fast or epithermal neutrons in 241Am. As a result, we have considered replacing the radial blanket of a fast reactor, which is usually depleted uranium, with 241AmO2.We chose a 714-MW(thermal) MONJU reactor, and we replaced some of the radial blanket and the outer core assemblies with 10 676 kg of 241AmO2 fuel. We calculated the reactor core by using the MCNP Monte Carlo code.The total amount of 242mAm becomes stabilized after 16 yr, but the enrichment does not. In our calculation, ~7.2% enrichment is obtained after 18 yr. Obtaining higher enrichments might indicate that 242mAm nuclear fuel can be used without further enrichment in many cases.The results presented in this paper are considered an upper limit scenario. In particular the target 241Am loading is not likely to be available soon, but 242mAm production from lesser amounts is easily scaled down proportional to the actual mass irradiated.