ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Fluor to serve as EPC contractor for Centrus’s Piketon plant expansion
The HALEU cascade at the American Centrifuge Plant in Piketon, Ohio. (Photo: Centrus Energy)
American Centrifuge Operating, a subsidiary of Centrus Energy Corp., has formed a multiyear strategic collaboration with Fluor Corporation in which Fluor will serve as the engineering, procurement, and construction (EPC) contractor for Centrus’s expansion of its uranium enrichment facility in Piketon, Ohio. Fluor will lead the engineering and design aspects of the American Centrifuge Plant’s expansion, manage the supply chain and procurement of key materials and services, oversee construction at the site, and support the commissioning of new capacity.
Kyoung-Ho Kang, Rae-Joon Park, Sang-Baik Kim, K.Y. Suh, F. B. Cheung, J. L. Rempe
Nuclear Technology | Volume 153 | Number 2 | February 2006 | Pages 208-223
Technical Paper | Thermal Hydraulics | doi.org/10.13182/NT06-A3701
Articles are hosted by Taylor and Francis Online.
LAVA-GAP experiments were performed to investigate the thermal and mechanical performance of the in-vessel core catcher, which was proposed to improve in-vessel retention for high-power reactors. In the LAVA-GAP experiments, alumina melt was used as a core material simulant. The hemispherical in-vessel core catcher made of carbon steel was installed inside the lower head vessel maintaining a uniform gap of 10 mm from the inner surface of the lower head vessel. Two types of in-vessel core catchers were used in this study. The first one is a single-layered in-vessel core catcher without an internal coating, and the other one is a two-layered in-vessel core catcher with a 0.5-mm-thick ZrO2 internal coating. LAVA-GAP experimental results indicate that an internally coated in-vessel core catcher has better thermal performance compared with an uncoated in-vessel core catcher. For the precise investigations on the thermal and mechanical response of the in-vessel core catcher, thermal analyses using the LiLAC code and metallurgical inspections were performed. LiLAC calculation results suggest that the coating layer could lessen the thermal attack transferred to the core catcher and result in improving the integrity of the core catcher in the LAVA-GAP experiments. Metallurgical inspection results indicate that the carbon steel showed stable and pure chemical compositions without any oxidation and interaction with the coating layer. In terms of the material aspects, these metallurgical inspection results suggest that the ZrO2 coating performed well.