ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
May 2025
Fusion Science and Technology
Latest News
The 2025 ANS election results are in!
Spring marks the passing of the torch for American Nuclear Society leadership. During this election cycle, ANS members voted for the newest vice president/president-elect, treasurer, and six board of director positions (four U.S., one non-U.S., one student). New professional division leadership was also decided on in this election, which opened February 25 and closed April 15. About 21 percent of eligible members of the Society voted—a similar turnout to last year.
Hirokazu Ohta, Takanari Ogata, Dimitrios Papaioannou, Vincenzo V. Rondinell, Marc Masson, Jean-Luc Paul
Nuclear Technology | Volume 190 | Number 1 | April 2015 | Pages 36-51
Technical Paper | Fuel Cycle and Management | doi.org/10.13182/NT14-50
Articles are hosted by Taylor and Francis Online.
An irradiation experiment on minor actinide (MA)-bearing uranium-plutonium-zirconium (U-Pu-Zr) alloys, in which contamination by rare earth (RE) elements was considered, was performed up to ~2.5 at. %, ~7 at. %, and ~10 at. % burnups in the Phenix fast reactor. All the irradiated metal fuel pins were subjected to nondestructive tests such as cladding profilometry and gamma spectroscopy. Then, cross-sectional metallography of the low-burnup and medium-burnup fuel alloys was performed, and the redistribution of the fuel matrix constituents—U, Pu, and Zr—in the low-burnup fuels was analyzed by energy dispersive X-ray spectroscopy. As a result, the irradiation growth of MA-rich and RE-rich precipitates was observed by comparing the low-burnup and medium-burnup fuels. From the postirradiation examinations carried out so far, it was confirmed that the irradiation swelling, the cross-sectional structures, and the migration of matrix constituent in metal fuels containing 5 wt% or less MAs and REs are almost the same as those in conventional U-Pu-Zr fuels.