ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Modernizing I&C for operations and maintenance, one phase at a time
The two reactors at Dominion Energy’s Surry plant are among the oldest in the U.S. nuclear fleet. Yet when the plant celebrated its 50th anniversary in 2023, staff could raise a toast to the future. Surry was one of the first plants to file a subsequent license renewal (SLR) application, and in May 2021, it became official: the plant was licensed to operate for a full 80 years, extending its reactors’ lifespans into 2052 and 2053.
Hirokazu Ohta, Takanari Ogata, Dimitrios Papaioannou, Vincenzo V. Rondinell, Marc Masson, Jean-Luc Paul
Nuclear Technology | Volume 190 | Number 1 | April 2015 | Pages 36-51
Technical Paper | Fuel Cycle and Management | doi.org/10.13182/NT14-50
Articles are hosted by Taylor and Francis Online.
An irradiation experiment on minor actinide (MA)-bearing uranium-plutonium-zirconium (U-Pu-Zr) alloys, in which contamination by rare earth (RE) elements was considered, was performed up to ~2.5 at. %, ~7 at. %, and ~10 at. % burnups in the Phenix fast reactor. All the irradiated metal fuel pins were subjected to nondestructive tests such as cladding profilometry and gamma spectroscopy. Then, cross-sectional metallography of the low-burnup and medium-burnup fuel alloys was performed, and the redistribution of the fuel matrix constituents—U, Pu, and Zr—in the low-burnup fuels was analyzed by energy dispersive X-ray spectroscopy. As a result, the irradiation growth of MA-rich and RE-rich precipitates was observed by comparing the low-burnup and medium-burnup fuels. From the postirradiation examinations carried out so far, it was confirmed that the irradiation swelling, the cross-sectional structures, and the migration of matrix constituent in metal fuels containing 5 wt% or less MAs and REs are almost the same as those in conventional U-Pu-Zr fuels.