ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
The U.S. Million Person Study of Low-Dose-Rate Health Effects
There is a critical knowledge gap regarding the health consequences of exposure to radiation received gradually over time. While there is a plethora of studies on the risks of adverse outcomes from both acute and high-dose exposures, including the landmark study of atomic bomb survivors, these are not characteristic of the chronic exposure to low-dose radiation encountered in occupational and public settings. In addition, smaller cohorts have limited numbers leading to reduced statistical power.
Raymond S. Troy, Robert V. Tompson, Tushar K. Ghosh, Sudarshan K. Loyalka, Nidia C. Gallego
Nuclear Technology | Volume 189 | Number 3 | March 2015 | Pages 241-257
Technical Paper | Reactor Safety | doi.org/10.13182/NT14-25
Articles are hosted by Taylor and Francis Online.
Characterization of graphite particles (dust) produced by abrasion that would occur in a pebble bed reactor is of interest for reasons of safety, operation, and maintenance. To better understand this abrasion and particle generation, we have built a test apparatus to produce particles by sliding abrasion in a 1% to 5% relative humidity air environment. We have used a commercial-grade graphite in our experiments and have generated size distributions for the abraded particles. We have also fit lognormal functions to those size distributions (for use in computer codes); determined particle shapes; measured temperature and humidity during the tests; measured and calculated wear rates; and measured the surface roughness of both pretest and posttest samples, particle surface areas, pore volumes, and pore volume distributions of particles produced during abrasion of graphite surfaces under different loadings and sliding speeds. The experiments showed that as loading (analogous to pebble depth in the reactor) and sliding speed increase, so do the wear rates and numbers of particles produced, while surface roughness decreases, increases, and then decreases. Brunauer-Emmett-Teller measurements show that abrasion increases surface area from 0.583 m2/g in the bulk material to 555 m2/g in material abraded at high loading and high sliding speed. Wear rates range from 0.005 to 0.991 g/m per contact site. The size of the particles observed was <4000 nm. In all, our research shows that pebble abrasion is a complex process that is not constant during operation and thus should be considered for future work.