ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
November 2025
Latest News
ORNL to partner with Type One, UTK on fusion facility
Yesterday, Oak Ridge National Laboratory announced that it is in the process of partnering with Type One Energy and the University of Tennessee–Knoxville. That partnership will have one primary goal: to establish a high-heat flux facility (HHF) at the Tennessee Valley Authority’s Bull Run Energy Complex in Clinton, Tenn.
Philip L. Lafreniere, Devin S. Rappleye, Robert O. Hoover, Michael F. Simpson, Edward D. Blandford
Nuclear Technology | Volume 189 | Number 2 | February 2015 | Pages 173-185
Technical Paper | Fuel Cycle and Management | doi.org/10.13182/NT14-35
Articles are hosted by Taylor and Francis Online.
Signature-based safeguards (SBS) is currently being investigated to assist traditional nuclear material accountancy in tracking special nuclear material (SNM) within a fuel cycle facility. SBS involves the identification and detection of signatures from process monitoring data for off-normal operation scenarios that involve the loss or improper movement of SNM. To determine possible realistic signatures, the electrorefiner (ER) process is modeled using the code Enhanced REFIN with Anodic Deposition (ERAD), and the JCC-31 Neutron Coincidence Counter, a nondestructive assay detector, is simulated using MCNPx-POLIMI. The ERAD model is used to determine the elemental composition of the ER cathode deposit, while the MCNPx model is developed to determine the single and double count rates expected for this deposition using ft8 tallies. For the determination of signatures, changes were made in the ER model for current density and diffusion layer thickness. The signatures in terms of both modeled ER and detector output demonstrate distinct signatures to be expected for off-normal operations. The detector response in particular shows significant changes registered in count rates when plutonium is deposited at the cathode, due to the changes in the simulated ER operating conditions.