ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Chris Wagner: The role of Eden Radioisotopes in the future of nuclear medicine
Chris Wagner has more than 40 years of experience in nuclear medicine, beginning as a clinical practitioner before moving into leadership roles at companies like Mallinckrodt (now Curium) and Nordion. His knowledge of both the clinical and the manufacturing sides of nuclear medicine laid the groundwork for helping to found Eden Radioisotopes, a start-up venture that intends to make diagnostic and therapeutic raw material medical isotopes like molybdenum-99 and lutetium-177.
Craig Brown, Ken Hartley, Jim Hulsman
Nuclear Technology | Volume 151 | Number 2 | August 2005 | Pages 120-125
Technical Paper | Advances in Nuclear Fuel Management - Increased Enrichment/High Burnup and Light Water Reactor Fuel Cycle Optimization | doi.org/10.13182/NT05-1
Articles are hosted by Taylor and Francis Online.
Boiling water reactors (BWRs) in the United States have transitioned over the past 30 yr from 7 × 7 and 8 × 8 fuels, 12-month cycles, and batch average burnups of 30 GWd/tonne U to 10 × 10 fuel, 18- to 24-month cycles, batch average burnups of 50 GWd/tonne U, and 5% power uprates in the 1990s. The next step for BWRs in the new millennium is 24-month cycles and extended power uprates as high as 120% power. These operating conditions lead to large reload fuel batch sizes (up to 45% of the core) that result in lower batch average discharge burnups (~45 GWd/tonne U). Parameters driving the drop in fuel burnup include enrichment limitations and the need for fuel performance improvements. The next steps to achieve better BWR fuel cycle economics and their associated benefits and implementation challenges are discussed in this paper.