ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
DOE issues new NEPA rule and procedures—and accelerates DOME reactor testing
Meeting a deadline set in President Trump’s May 23 executive order “Reforming Nuclear Reactor Testing at the Department of Energy,” the DOE on June 30 updated information on its National Environmental Policy Act (NEPA) rulemaking and implementation procedures and published on its website an interim final rule that rescinds existing regulations alongside new implementing procedures.
Craig Brown, Ken Hartley, Jim Hulsman
Nuclear Technology | Volume 151 | Number 2 | August 2005 | Pages 120-125
Technical Paper | Advances in Nuclear Fuel Management - Increased Enrichment/High Burnup and Light Water Reactor Fuel Cycle Optimization | doi.org/10.13182/NT05-1
Articles are hosted by Taylor and Francis Online.
Boiling water reactors (BWRs) in the United States have transitioned over the past 30 yr from 7 × 7 and 8 × 8 fuels, 12-month cycles, and batch average burnups of 30 GWd/tonne U to 10 × 10 fuel, 18- to 24-month cycles, batch average burnups of 50 GWd/tonne U, and 5% power uprates in the 1990s. The next step for BWRs in the new millennium is 24-month cycles and extended power uprates as high as 120% power. These operating conditions lead to large reload fuel batch sizes (up to 45% of the core) that result in lower batch average discharge burnups (~45 GWd/tonne U). Parameters driving the drop in fuel burnup include enrichment limitations and the need for fuel performance improvements. The next steps to achieve better BWR fuel cycle economics and their associated benefits and implementation challenges are discussed in this paper.