ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Project Omega emerges from stealth mode with plans to recycle U.S. spent fuel
Nuclear technology start-up Project Omega announced on February 11 that it has emerged from stealth mode with hopes of processing and recycling spent nuclear fuel into “long-duration, high-density power sources and critical materials for the nuclear industry.”
Koichi Uozumi, Takatoshi Hijikata, Takeshi Tsukada, Tadafumi Koyama, Takayuki Terai, Akihiro Suzuki
Nuclear Technology | Volume 188 | Number 1 | October 2014 | Pages 83-96
Technical Paper | Reprocessing | doi.org/10.13182/NT13-49
Articles are hosted by Taylor and Francis Online.
A zeolite column system is under development to realize both a high decontamination factor and high throughput for the treatment of the spent salt generated in the pyroprocessing of the metal fuel cycle. To study the feasibility of the zeolite column system from an engineering aspect, an engineering-scale zeolite column apparatus was installed. Measurements of the superficial velocities of molten salt passing through the columns filled with granular form type-A zeolite at various driving pressures showed that the conventional relationship of the velocity and pressure loss in the components of the apparatus can be useful for the molten salt system. Then, a demonstration test to simulate the decontamination of a fission product, which was represented by cesium, was performed using a zeolite that had been pretreated in aqueous solutions to remove the sodium. Although the absorbed amount of cesium was not as high as previously reported, the concentration of cesium in the effluent salt exhibited a breakthrough curve. Therefore, some of the cesium in the salt was absorbed into the zeolite, and accordingly, the feasibility of the zeolite column system was demonstrated.