ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Project Omega emerges from stealth mode with plans to recycle U.S. spent fuel
Nuclear technology start-up Project Omega announced on February 11 that it has emerged from stealth mode with hopes of processing and recycling spent nuclear fuel into “long-duration, high-density power sources and critical materials for the nuclear industry.”
M. T. Andrews, J. T. Goorley, E. C. Corcoran, D. G. Kelly
Nuclear Technology | Volume 187 | Number 3 | September 2014 | Pages 235-242
Technical Paper | Fission Reactors | doi.org/10.13182/NT13-72
Articles are hosted by Taylor and Francis Online.
Study of the magnitude and temporal behavior of delayed neutrons (DNs) enables the identification of fissile isotopes and a determination of their relative quantities. Thus, the ability to model accurately these neutrons and the methods of their detection is of relevance to nuclear forensics and counterterrorism. The capability of MCNP6 to model these emissions was examined and compared to measurements of the DNs produced by 233U, 235U, and 239Pu after neutron-induced fission. Fissile samples were irradiated in a SLOWPOKE-2 research reactor for 60 s and were then conveyed via pneumatic tubing to an array of six 3He detectors embedded in a paraffin moderator. Several MCNP6 input files were created to reproduce irradiation conditions, temporal DN emission, and the detection arrangement. Nuclear reactions and other effects within the 3He detectors were reproduced by MCNP6, and detection efficiencies of this modeled arrangement determined by MCNP6 were in agreement with experimental measurements. Finally, the library and model DN emission options in the MCNP6v1 release were evaluated and compared to the measured magnitudes and temporal behavior of 233U, 235U, and 239Pu. Significant discrepancies observed between the DN model option and measurements for count times >100 s are discussed.