ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
M. T. Andrews, J. T. Goorley, E. C. Corcoran, D. G. Kelly
Nuclear Technology | Volume 187 | Number 3 | September 2014 | Pages 235-242
Technical Paper | Fission Reactors | doi.org/10.13182/NT13-72
Articles are hosted by Taylor and Francis Online.
Study of the magnitude and temporal behavior of delayed neutrons (DNs) enables the identification of fissile isotopes and a determination of their relative quantities. Thus, the ability to model accurately these neutrons and the methods of their detection is of relevance to nuclear forensics and counterterrorism. The capability of MCNP6 to model these emissions was examined and compared to measurements of the DNs produced by 233U, 235U, and 239Pu after neutron-induced fission. Fissile samples were irradiated in a SLOWPOKE-2 research reactor for 60 s and were then conveyed via pneumatic tubing to an array of six 3He detectors embedded in a paraffin moderator. Several MCNP6 input files were created to reproduce irradiation conditions, temporal DN emission, and the detection arrangement. Nuclear reactions and other effects within the 3He detectors were reproduced by MCNP6, and detection efficiencies of this modeled arrangement determined by MCNP6 were in agreement with experimental measurements. Finally, the library and model DN emission options in the MCNP6v1 release were evaluated and compared to the measured magnitudes and temporal behavior of 233U, 235U, and 239Pu. Significant discrepancies observed between the DN model option and measurements for count times >100 s are discussed.