ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
NRC begins special inspection at Constellation’s Quad Cities plant
The Nuclear Regulatory Commission is conducting a special inspection at Constellation’s Quad Cities nuclear plant to review two events caused by battery issues. Neither event had any impact on public health or plant workers.
Benoît Dessirier, Jerker Jarsjö, Andrew Frampton
Nuclear Technology | Volume 187 | Number 2 | August 2014 | Pages 147-157
Technical Paper | Radioactive Waste Management and Disposal | doi.org/10.13182/NT13-77
Articles are hosted by Taylor and Francis Online.
Deep geological repositories are generally considered as suitable environments for final disposal of spent nuclear fuel. In the Swedish and Finnish repository design concept, canisters are to be placed in deep underground tunnels in sparsely fractured crystalline bedrock, in deposition holes in which each canister is embedded with an expansive bentonite-clay-mixture buffer. A set of semigeneric two-dimensional radially symmetric TOUGH2 simulations are conducted to investigate the multiphase dynamics and interactions between water and air in a bentonite-rock environment. The main objective is to identify how sensitive saturation times of bentonite are to the geometry of the rock fractures and to commonly adopted simplifications in the unsaturated flow description such as Richards assumptions. Results show that the location of the intersection between the fracture system and the deposition hole is a key factor affecting saturation times. A potential long-lasting desaturation of the rock matrix close to the bentonite-rock interface is also identified extending up to 10 cm inside the rock. Two-phase-flow models predict systematically longer saturation times compared to a simplified Richards approximation, which is frequently used to represent unsaturated flows. The discrepancy diverges considerably as full saturation is approached.