ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
From Capitol Hill: Nuclear is back, critical for America’s energy future
The U.S. House Energy and Commerce Subcommittee on Energy convened its first hearing of the year, “American Energy Dominance: Dawn of the New Nuclear Era,” on January 7, where lawmakers and industry leaders discussed how nuclear energy can help meet surging electricity demand driven by artificial intelligence, data centers, advanced manufacturing, and national security needs.
Nicholas R. Brown, Albert L. Hanson, and David J. Diamond
Nuclear Technology | Volume 187 | Number 1 | July 2014 | Pages 103-116
Technical Note | Fuel Cycle and Management | doi.org/10.13182/NT13-20
Articles are hosted by Taylor and Francis Online.
This study addresses the overprediction of local power when the burnup distribution in each half-element of the National Institute of Standards and Technology (NIST) research reactor, known as the NBSR, is assumed to be uniform—a constraint in the full-core model used for neutronic analysis. A single-element model was utilized to quantify the impact of axial and platewise burnup on the power distribution within the NBSR fuel elements for both high-enriched uranium (HEU) and (proposed) low-enriched uranium (LEU) fuel. To validate this approach, key parameters in the single-element model were compared to parameters from an equilibrium core model, specifically, neutron energy spectrum, power distribution, and integral 235U vector. The power distribution changes significantly when incorporating local burnup effects and has lower power peaking relative to the uniform burnup case. In the uniform burnup case, the axial relative power peaking is overpredicted by as much as 59% in the HEU single element and 46% in the LEU single element. In the uniform burnup case, the platewise power peaking is overpredicted by as much as 23% in the HEU single element and 18% in the LEU single element. The degree of overprediction increases as a function of burnup cycle, with the greatest overprediction at the end of fuel element life. However, the overprediction in local power is always conservative in terms of the minimum critical heat flux ratio, a key safety parameter that depends on the local heat flux condition. The thermal flux peak is always in the midplane gap; this causes the local cumulative burnup near the midplane gap to be significantly higher than the fuel element average. Uniform burnup distribution throughout a half-element also causes a bias in fuel element reactivity worth particularly near end of life, primarily due to the importance of the fissile inventory in the midplane gap region. Despite this bias, comparisons of cycle length exhibit very good agreement between the core model with uniform burnup and the NBSR, which has many decades of operational experience with HEU fuel.