ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Dragonfly, a Pu-fueled drone heading to Titan, gets key NASA approval
Curiosity landed on Mars sporting a radioisotope thermoelectric generator (RTG) in 2012, and a second NASA rover, Perseverance, landed in 2021. Both are still rolling across the red planet in the name of science. Another exploratory craft with a similar plutonium-238–fueled RTG but a very different mission—to fly between multiple test sites on Titan, Saturn’s largest moon—recently got one step closer to deployment.
On April 25, NASA and the Johns Hopkins University Applied Physics Laboratory (APL) announced that the Dragonfly mission to Saturn’s icy moon passed its critical design review. “Passing this mission milestone means that Dragonfly’s mission design, fabrication, integration, and test plans are all approved, and the mission can now turn its attention to the construction of the spacecraft itself,” according to NASA.
Yukimoto Maeda, Takafumi Aoyama, Toshihiro Odo, Satoru Nakai, Soju Suzuki
Nuclear Technology | Volume 150 | Number 1 | April 2005 | Pages 16-36
Technical Paper | Sodium Technology | doi.org/10.13182/NT05-A3602
Articles are hosted by Taylor and Francis Online.
The experimental fast reactor JOYO at the O-arai Engineering Center of the Japan Nuclear Cycle Development Institute is the first liquid sodium fast reactor in Japan. The purpose of constructing JOYO was to obtain technical information about liquid-metal fast breeder reactors (LMFBRs) through experience with their design, construction, and operation and to use the reactor as a fast neutron irradiation facility for the development of fuels, materials, and other components required for the LMFBR program. Through design, construction, testing, operation, and maintenance experience, JOYO has contributed much to the LMFBR development program. In addition to providing operating experience, many kinds of irradiation tests have been conducted for the development of fuels and materials under the conditions of higher fast neutron flux and temperature than those in light water reactors. JOYO has been operated successfully for a quarter-century without any serious problem, and this operation demonstrated the safety and reliability of the sodium-cooled fast reactor.The reactor has just been upgraded to the MK-III core to increase irradiation capability for playing a greater role in providing an irradiation field as a fast reactor. Given the worldwide trend of fast reactor shutdowns, JOYO is an increasingly valuable world resource for current and future reactor development.