ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Fluor to serve as EPC contractor for Centrus’s Piketon plant expansion
The HALEU cascade at the American Centrifuge Plant in Piketon, Ohio. (Photo: Centrus Energy)
American Centrifuge Operating, a subsidiary of Centrus Energy Corp., has formed a multiyear strategic collaboration with Fluor Corporation in which Fluor will serve as the engineering, procurement, and construction (EPC) contractor for Centrus’s expansion of its uranium enrichment facility in Piketon, Ohio. Fluor will lead the engineering and design aspects of the American Centrifuge Plant’s expansion, manage the supply chain and procurement of key materials and services, oversee construction at the site, and support the commissioning of new capacity.
Jin Ho Song, Jong Hwan Kim
Nuclear Technology | Volume 149 | Number 3 | March 2005 | Pages 309-323
Technical Paper | Thermal Hydraulics | doi.org/10.13182/NT05-A3598
Articles are hosted by Taylor and Francis Online.
A series of experiments on fuel/coolant interaction (FCI) was performed in the TROI facility, where the composition of the mixture was varied. The compositions of the UO2 and ZrO2 mixture in weight percent were 50:50, 70:30, 80:20, and pure ZrO2. The responses of the system including the temperature of the pool of water in the test vessel, pressure and temperature of the containment vessel, and dynamic pressures and force were measured. In addition, high-speed movies were taken through the windows. The tests using corium with a 70:30 composition and pure zirconia resulted in a spontaneous energetic steam explosion, while the tests with other compositions did not lead to an energetic FCI. The debris size distribution and pressure and temperature responses clearly indicated the cases with an energetic explosion and the cases without an explosion. The high-speed movie taken during the FCI through the visible window clearly disclosed the outstanding phases of the FCI, which were the melt entry phase, the triggering phase, and the continued melt jet and expansion of the mixing zone phase.