ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
Findings of the ANS Executive Order Expert Advisory Group
On May 23, President Donald Trump signed four Executive Orders (EOs) designed to “usher in a nuclear energy renaissance” by building on federal policies and programs and directing efficiencies in the licensing, siting, development, and deployment of advanced reactor technologies.
In order to evaluate the specific proposals contained in the EOs, a group of experts was convened from various sectors of the U.S. nuclear technology enterprise, under the auspices of the ANS External Affairs Committee, to compare the EOs against existing ANS board-approved Position Statements and to offer constructive input for subsequent implementation by the Trump administration.
The group’s findings and feedback, which were delivered by ANS CEO Craig Piercy to ANS President Lisa Marshall and the Board of Directors, are listed below, grouped by individual EO.
Lainsu Kao, Show-Chyuan Chiang
Nuclear Technology | Volume 149 | Number 3 | March 2005 | Pages 265-280
Technical Paper | Reactor Safety | doi.org/10.13182/NT05-A3595
Articles are hosted by Taylor and Francis Online.
The work described in this paper is benchmark calculations of pressurization transient turbine trip tests performed at the Peach Bottom boiling water reactor (BWR). It is part of an overall effort in providing qualification basis for the INER/TPC BWR transient analysis method developed for the Kuosheng and Chinshan plants. The method primarily utilizes an advanced system thermal hydraulics code, RETRAN02/MOD5, for transient safety analyses. Since pressurization transients would result in a strong coupling effect between core neutronic and system thermal hydraulics responses, the INER/TPC method employs the one-dimensional kinetic model in RETRAN with a cross-section data library generated by the Studsvik-CMS code package for the transient calculations. The Peach Bottom Turbine Trip (PBTT) tests, including TT1, TT2, and TT3, have been successfully performed in the plant and assigned as standards commonly for licensing method qualifications for years. It is an essential requirement for licensing purposes to verify integral capabilities and accuracies of the codes and models of the INER/TPC method in simulating such pressurization transients. Specific Peach Bottom plant models, including both neutronics and thermal hydraulics, are developed using modeling approaches and experiences generally adopted in the INER/TPC method. Important model assumptions in RETRAN for the PBTT test simulations are described in this paper. Simulation calculations are performed with best-estimated initial and boundary conditions obtained from plant test measurements. The calculation results presented in this paper demonstrate that the INER/TPC method is capable of calculating accurately the core and system transient behaviors of the tests. Excellent agreement, both in trends and magnitudes between the RETRAN calculation results and the PBTT measurements, shows reliable qualifications of the codes/users/models involved in the method. The RETRAN calculated peak neutron fluxes of the PBTT tests are higher than the measurements, which ensures the conservatism of using the INER/TPC method for Kuosheng and Chinshan licensing safety analyses.