ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
DOE issues new NEPA rule and procedures—and accelerates DOME reactor testing
Meeting a deadline set in President Trump’s May 23 executive order “Reforming Nuclear Reactor Testing at the Department of Energy,” the DOE on June 30 updated information on its National Environmental Policy Act (NEPA) rulemaking and implementation procedures and published on its website an interim final rule that rescinds existing regulations alongside new implementing procedures.
Mikio Sakai, Toshihiro Yamamoto, Minoru Murazaki, Yoshinori Miyoshi
Nuclear Technology | Volume 149 | Number 2 | February 2005 | Pages 141-149
Technical Paper | Reactor Safety | doi.org/10.13182/NT05-A3586
Articles are hosted by Taylor and Francis Online.
In conventional criticality evaluations of nuclear powder systems, effects of particulate behavior were not considered. In other words, it is difficult to take into account the particle motion in the criticality evaluations. We have developed a novel criticality evaluation code to resolve this problem. The criticality evaluation code, coupling a discrete element method simulation code with a continuous-energy Monte Carlo transport code, makes it possible to study the effects of the particulate dynamics on criticality. This criticality evaluation code is applied to the mixed-oxide (MOX) fuel powder agitation process. The criticality evaluations are performed while mixing the MOX fuel powder and an additive powder in a stirred vessel to investigate the effects of the powder free surface deformation and the particulate mixture state on the effective multiplication factor. The evaluation results reveal that the effective multiplication factor decreases due to the powder boundary deformation while it increases as the mixture condition of MOX powder and Zn-St powder is close to homogeneous.