ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
November 2025
Latest News
Canada’s General Fusion to become publicly traded company
General Fusion has entered into a definitive business combination agreement with Spring Valley Acquisition Corp. (SVAC) that would make General Fusion the first publicly traded pure-play fusion firm, the company announced on January 22. The business combination is projected to be completed in mid-2026.
Ali Tanrikut, Orhan Yesin
Nuclear Technology | Volume 149 | Number 1 | January 2005 | Pages 88-100
Technical Paper | Thermal Hydraulics | doi.org/10.13182/NT05-A3581
Articles are hosted by Taylor and Francis Online.
In this research study, in-tube condensation in the presence of air was investigated experimentally at a heat exchanger of countercurrent type for different operating conditions. The test matrix for the steady-state condition covers the range of pressures P = 1.8 to 5.5 bars, vapor Reynolds numbers Rev = 45 000 to 94 000, and inlet air mass fraction values Xi = 0 to 52%. The effect of air manifests itself by a reduction in the local heat flux and the local heat transfer coefficient. The local heat transfer coefficient is inversely proportional to the local air mass fraction. Both the local heat flux and the heat transfer coefficient vary with the system pressure and vapor mass flow rate. There is no effect of inlet superheating on the local heat flux. The film Reynolds number lies in the range of the turbulent region. Two experiments simulating loss of coolant to the secondary side of the condenser were performed, for pure steam and for an air/steam mixture. These transients show that the vapor suction rate, effective condensation length, and overall heat transfer rate are a function of the coolant boiloff rate and the air mass fraction.