ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
INL’s new innovation incubator could link start-ups with an industry sponsor
Idaho National Laboratory is looking for a sponsor to invest $5 million–$10 million in a privately funded innovation incubator to support seed-stage start-ups working in nuclear energy, integrated energy systems, cybersecurity, or advanced materials. For their investment, the sponsor gets access to what INL calls “a turnkey source of cutting-edge American innovation.” Not only are technologies supported by the program “substantially de-risked” by going through technical review and development at a national laboratory, but the arrangement “adds credibility, goodwill, and visibility to the private sector sponsor’s investments,” according to INL.
Maolong Liu, Yuki Ishiwatari, Koji Okamoto
Nuclear Technology | Volume 186 | Number 2 | May 2014 | Pages 216-228
Technical Paper | Fission Reactors | doi.org/10.13182/NT13-57
Articles are hosted by Taylor and Francis Online.
As Units 1, 2, and 3 of the Fukushima Daiichi nuclear power plant (NPP) entered the phase of long-term station blackout following the huge tsunami, the decay heat could not be effectively removed from the reactor vessel and resulted in high in-vessel pressure and temperature. The Tokyo Electric Power Company announced that the safety relief valves of Fukushima Daiichi NPP Unit 1 (1F1) were never manually opened. However, the measured reactor pressure was decreased to ∼1 MPa at 2:43 on March 12, 2011. Such unanticipated depressurization might accelerate core uncovery and on the other hand delay containment failure caused by direct containment heating. In addition, the failure time and the failure path of the boiling water reactor pressure boundary before manual depressurization have a huge impact on the resulting source term. The authors modeled the creep failure of the stainless steel guide tubes of the source range monitor in the core and the main steam line and estimated the possible depressurization mechanism of 1F1 using the SAMPSON (Severe Accident Analysis Code with Mechanistic, Parallelized Simulations Oriented towards Nuclear Field) severe accident analysis code.