ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Leading the charge: INL’s role in advancing HALEU production
Idaho National Laboratory is playing a key role in helping the U.S. Department of Energy meet near-term needs by recovering HALEU from federal inventories, providing critical support to help lay the foundation for a future commercial HALEU supply chain. INL also supports coordination of broader DOE efforts, from material recovery at the Savannah River Site in South Carolina to commercial enrichment initiatives.
Maolong Liu, Yuki Ishiwatari, Koji Okamoto
Nuclear Technology | Volume 186 | Number 2 | May 2014 | Pages 216-228
Technical Paper | Fission Reactors | doi.org/10.13182/NT13-57
Articles are hosted by Taylor and Francis Online.
As Units 1, 2, and 3 of the Fukushima Daiichi nuclear power plant (NPP) entered the phase of long-term station blackout following the huge tsunami, the decay heat could not be effectively removed from the reactor vessel and resulted in high in-vessel pressure and temperature. The Tokyo Electric Power Company announced that the safety relief valves of Fukushima Daiichi NPP Unit 1 (1F1) were never manually opened. However, the measured reactor pressure was decreased to ∼1 MPa at 2:43 on March 12, 2011. Such unanticipated depressurization might accelerate core uncovery and on the other hand delay containment failure caused by direct containment heating. In addition, the failure time and the failure path of the boiling water reactor pressure boundary before manual depressurization have a huge impact on the resulting source term. The authors modeled the creep failure of the stainless steel guide tubes of the source range monitor in the core and the main steam line and estimated the possible depressurization mechanism of 1F1 using the SAMPSON (Severe Accident Analysis Code with Mechanistic, Parallelized Simulations Oriented towards Nuclear Field) severe accident analysis code.