ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Dragonfly, a Pu-fueled drone heading to Titan, gets key NASA approval
Curiosity landed on Mars sporting a radioisotope thermoelectric generator (RTG) in 2012, and a second NASA rover, Perseverance, landed in 2021. Both are still rolling across the red planet in the name of science. Another exploratory craft with a similar plutonium-238–fueled RTG but a very different mission—to fly between multiple test sites on Titan, Saturn’s largest moon—recently got one step closer to deployment.
On April 25, NASA and the Johns Hopkins University Applied Physics Laboratory (APL) announced that the Dragonfly mission to Saturn’s icy moon passed its critical design review. “Passing this mission milestone means that Dragonfly’s mission design, fabrication, integration, and test plans are all approved, and the mission can now turn its attention to the construction of the spacecraft itself,” according to NASA.
Kevin Hesketh, Gerhard Schlosser, Dieter F. Porsch, Timm Wolf, Oliver Köberl, Benoit Lance, Rakesh Chawla, Jess C. Gehin, Ron Ellis, Sadao Uchikawa, Osamu Sato, Tsutomu Okubo, Hideaki Mineo, Toru Yamamoto, Yutaka Sagayama, Enrico Sartori
Nuclear Technology | Volume 148 | Number 3 | December 2004 | Pages 244-258
Technical Paper | Fuel Cycle and Management | doi.org/10.13182/NT04-A3564
Articles are hosted by Taylor and Francis Online.
For many years various countries with access to commercial reprocessing services have been routinely recycling plutonium as UO2/PuO2 mixed oxide (MOX) fuel in light water reactors (LWRs). This LWR MOX recycle strategy is still widely regarded as an interim step leading to the eventual establishment of sustainable fast reactor fuel cycles. The OECD/NEA Working Party on the Physics of Plutonium Fuels and Innovative Fuel Cycles (WPPR) has recently completed a review of the technical options for plutonium management in what it refers to as the "medium term." For the purpose of the review, the WPPR considers the medium term to cover the period from now up to the point at which fast reactor fuel cycles are established on a commercial scale. The review identified a number of different designs of innovative plutonium fuel assemblies intended to be used in current LWR cores, in LWRs with significantly different moderation properties, as well as in high-temperature gas reactors. The full review report describes these various options and highlights their respective advantages and disadvantages. This paper briefly summarizes the main findings of the review.