ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
INL’s new innovation incubator could link start-ups with an industry sponsor
Idaho National Laboratory is looking for a sponsor to invest $5 million–$10 million in a privately funded innovation incubator to support seed-stage start-ups working in nuclear energy, integrated energy systems, cybersecurity, or advanced materials. For their investment, the sponsor gets access to what INL calls “a turnkey source of cutting-edge American innovation.” Not only are technologies supported by the program “substantially de-risked” by going through technical review and development at a national laboratory, but the arrangement “adds credibility, goodwill, and visibility to the private sector sponsor’s investments,” according to INL.
Hiroyuki Sato, Xing L. Yan, Yukio Tachibana, Kazuhiko Kunitomi, Yukitaka Kato
Nuclear Technology | Volume 185 | Number 3 | March 2014 | Pages 227-238
Technical Paper | Fission Reactors | doi.org/10.13182/NT13-97
Articles are hosted by Taylor and Francis Online.
The transient response of the high-temperature gas-cooled reactor (HTGR) to depressurized loss of forced circulation combined with failure of all reactor trip systems, a beyond-design-basis accident, is analyzed for an extended period of time during which no active core cooling is resumed. The characteristic behavior of the reactor during the long-term conduction cooldown event is found to be shaped by several parameters that are usually not considered in the safety design of the HTGR. For example, while the Doppler effect is usually relied upon to provide inherent shutdown of the reactor, the reactivity coefficient of temperature of the graphite moderator is found to be a critical parameter for determining the final settling temperature of the fuel following the recriticality. Furthermore, this study finds that the peak fuel temperature reached during this event is correlated strongly even to the initial core operating temperature prior to the initiation of the transient event. These and other results of this study are expected to provide useful input to the development of enhanced safety design guidelines for commercial HTGRs in the aftermath of the Fukushima accident.