ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Benjamin A. Lindley, N. Zara Zainuddin, Paolo Ferroni, Andrew Hall, Fausto Franceschini, Geoffrey T. Parks
Nuclear Technology | Volume 185 | Number 2 | February 2014 | Pages 127-146
Technical Paper | Fuel Cycle and Management | doi.org/10.13182/NT13-53
Articles are hosted by Taylor and Francis Online.
Multiple recycle of transuranic (TRU) isotopes in thermal reactors results in degradation of the plutonium (Pu) fissile quality with buildup of higher actinides (e.g., Am, Cm, Cf), some of which are thermal absorbers. These phenomena lead to increasing amounts of Pu feed being required to sustain criticality and accordingly larger TRU content in the multirecycled fuel inventory, ultimately resulting in a positive moderator temperature coefficient (MTC) and void reactivity coefficient. Because of the favorable impact fostered by use of thorium (Th) on these coefficients, the feasibility of Th-TRU multiple recycle in reduced-moderation pressurized water reactors (PWRs) and boiling water reactors (BWRs) has been investigated. In this paper, Part I of two companion papers, the analysis is limited to a single assembly, with full-core models presented in Part II. Spatial separation of TRU from bred uranium is found to greatly improve neutronic performance. A large reduction in moderation is necessary to allow full actinide recycle. This will pose thermal-hydraulic challenges, which are discussed in Part II. In addition, the harder neutron spectrum resulting from the reduced moderation also reduces the control rod worth, while there is a neutronic incentive to use increased mechanical shim to maintain a negative MTC. It may therefore be desirable to increase the number of rod cluster control assemblies. Superior burnup is achievable in a reduced-moderation BWR as a larger reduction in moderation is feasible, although the incineration rate is reduced relative to a PWR due to a higher conversion ratio.