ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Dragonfly, a Pu-fueled drone heading to Titan, gets key NASA approval
Curiosity landed on Mars sporting a radioisotope thermoelectric generator (RTG) in 2012, and a second NASA rover, Perseverance, landed in 2021. Both are still rolling across the red planet in the name of science. Another exploratory craft with a similar plutonium-238–fueled RTG but a very different mission—to fly between multiple test sites on Titan, Saturn’s largest moon—recently got one step closer to deployment.
On April 25, NASA and the Johns Hopkins University Applied Physics Laboratory (APL) announced that the Dragonfly mission to Saturn’s icy moon passed its critical design review. “Passing this mission milestone means that Dragonfly’s mission design, fabrication, integration, and test plans are all approved, and the mission can now turn its attention to the construction of the spacecraft itself,” according to NASA.
Jens T. Birkholzer, Sumit Mukhopadhyay, Yvonne Y. W. Tsang
Nuclear Technology | Volume 148 | Number 2 | November 2004 | Pages 138-150
Technical Paper | High-Level Radioactive Waste Disposal | doi.org/10.13182/NT04-A3554
Articles are hosted by Taylor and Francis Online.
Predicting the amount of water that may seep into waste emplacement drifts is important for assessing the performance of the proposed geologic repository for spent nuclear fuel and high-level radioactive waste at Yucca Mountain, Nevada. The repository would be located in thick, partially saturated, fractured volcanic tuff that will be heated to above-boiling temperatures as a result of heat generation from the decay of nuclear waste. Since infiltrating water will be subject to vigorous boiling for a significant time period, the superheated rock zone (i.e., rock temperature above the boiling point of water) can form an effective vaporization barrier that reduces the possibility of water arrival at emplacement drifts. This paper analyzes the behavior of episodic preferential flow events that penetrate the hot fractured rock, evaluate the impact of such flow behavior on the effectiveness of the vaporization barrier, and discuss the implications for the performance assessment of the repository. Our analysis demonstrates that no liquid water is expected to arrive at emplacement drifts during the first several hundred years after waste emplacement, when the rock temperature is high in the drift vicinity and boiling conditions exist in a sufficiently large region above the drifts.