ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
November 2025
Latest News
Canada’s General Fusion to become publicly traded company
General Fusion has entered into a definitive business combination agreement with Spring Valley Acquisition Corp. (SVAC) that would make General Fusion the first publicly traded pure-play fusion firm, the company announced on January 22. The business combination is projected to be completed in mid-2026.
Lee G. Glascoe, Thomas A. Buscheck, James Gansemer, Yunwei Sun, Kenrick Lee
Nuclear Technology | Volume 148 | Number 2 | November 2004 | Pages 125-137
Technical Paper | High-Level Radioactive Waste Disposal | doi.org/10.13182/NT04-A3553
Articles are hosted by Taylor and Francis Online.
The MultiScale ThermoHydrologic Model (MSTHM) is used to predict thermal-hydrologic conditions in emplacement drifts and the adjoining host rock throughout a proposed nuclear waste repository. This modeling effort simulates a lower-temperature operation mode with a different panel loading than the repository currently being considered for the Yucca Mountain license application. Simulations address the influence of repository-scale thermal-conductivity heterogeneity and the influence of preclosure operational factors on thermal-loading conditions. MSTHM can accommodate a complex repository layout, a development that, along with other improvements, enables more rigorous analyses of preclosure operational factors. Differences in MSTHM output occurring with these new capabilities are noted for a new sequential waste-package-loading technique compared with a standard simultaneous-loading technique. Alternative approaches to modeling repository-scale thermal-conductivity heterogeneity in the host-rock units are investigated, and a study incorporating geostatistically varied host-rock thermal conductivity is discussed.