ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
November 2025
Latest News
DOE saves $1.7M transferring robotics from Portsmouth to Oak Ridge
The Department of Energy’s Office of Environmental Management said it has transferred four robotic demolition machines from the department’s Portsmouth Site in Ohio to Oak Ridge, Tenn., saving the office more than $1.7 million by avoiding the purchase of new equipment.
Masaru Todoriki, Atsuyuki Suzuki
Nuclear Technology | Volume 120 | Number 1 | October 1997 | Pages 81-85
Technical Note | Enrichment and Reprocessing System | doi.org/10.13182/NT97-A35433
Articles are hosted by Taylor and Francis Online.
The laser-induced thermal lens oscillation process, which can be generated in an organic solution by argon-ion laser irradiation is studied to investigate the possibility of its application for monitoring of tri-n-butyl phosphate (TBP) concentration in nuclear fuel reprocessing. The oscillation process is a nonlinear dynamical system whose states depend on three control parameters: laser beam power, depth from solution surface to a laser beam irradiation position, and concentration of solvent, i.e., TBP. From a series of experiments, it is found that a transition between different states is distinctly related to the concentration of TBP solution. From this result, a new on-line monitoring method of solvent concentration is proposed. This method indicates the technique’s potential as a viable on-line analytical instrument in solvent extraction processes of nuclear fuel reprocessing.