ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
Reijo Munther, Juhani Vihavainen, Heikki Kalli, Jyrki Kouhia, Vesa Riikonen
Nuclear Technology | Volume 119 | Number 3 | September 1997 | Pages 235-243
Technical Paper | Nuclear Reactor Safety | doi.org/10.13182/NT97-A35400
Articles are hosted by Taylor and Francis Online.
The RELAP5 calculation results for a series of gravity-driven emergency core-cooling (ECC) experiments with the parallel channel test loop (PACTEL) facility are provided. The simulated accident was a small-break loss-of-coolant accident with a break in one hot leg of the three loops of the facility. The ECC flow was provided from a core makeup tank (CMT) located at a higher elevation than the main part of the primary system. The CMT was pressurized with pipings from the pressurizer and a cold leg. The tests indicate that rapid condensation in the CMT influences the ECC flow. The experimental results are numerically analyzed using the RELAP5/MOD3.1 code. The calculations show good agreement with the tests except in the modeling of rapid condensation.