ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Chris Wagner: The role of Eden Radioisotopes in the future of nuclear medicine
Chris Wagner has more than 40 years of experience in nuclear medicine, beginning as a clinical practitioner before moving into leadership roles at companies like Mallinckrodt (now Curium) and Nordion. His knowledge of both the clinical and the manufacturing sides of nuclear medicine laid the groundwork for helping to found Eden Radioisotopes, a start-up venture that intends to make diagnostic and therapeutic raw material medical isotopes like molybdenum-99 and lutetium-177.
Ahmet Bozkurt, Nicholas Tsoulfanidis
Nuclear Technology | Volume 119 | Number 1 | July 1997 | Pages 38-47
Technical Paper | Radiation Protection | doi.org/10.13182/NT77-A35393
Articles are hosted by Taylor and Francis Online.
Gamma-ray dose rate distribution around a pressurized water reactor spent-fuel assembly is studied using the Monte Carlo N-particle transport code (MCNP) version 4a. A detailed rod-by-rod modeling of the assembly is utilized, showing explicitly the fuel, cladding, control rod channels, and the instrumentation tube. A cylindrically distributed source of gamma rays, within every fuel rod, is considered with a seven-group energy spectrum. Dose rates are obtained by tallying the gamma rays at several axial and radial positions outside the assembly. The results indicate that the radial distribution of the dose rate can be represented by a power relationship of the form r−n, where r is the radial distance from the assembly center. Another important conclusion from this study is that the dose rate close to the assembly surface is overestimated if a homogeneous assembly model is used.