ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Young Members Group
The Young Members Group works to encourage and enable all young professional members to be actively involved in the efforts and endeavors of the Society at all levels (Professional Divisions, ANS Governance, Local Sections, etc.) as they transition from the role of a student to the role of a professional. It sponsors non-technical workshops and meetings that provide professional development and networking opportunities for young professionals, collaborates with other Divisions and Groups in developing technical and non-technical content for topical and national meetings, encourages its members to participate in the activities of the Groups and Divisions that are closely related to their professional interests as well as in their local sections, introduces young members to the rules and governance structure of the Society, and nominates young professionals for awards and leadership opportunities available to members.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Dragonfly, a Pu-fueled drone heading to Titan, gets key NASA approval
Curiosity landed on Mars sporting a radioisotope thermoelectric generator (RTG) in 2012, and a second NASA rover, Perseverance, landed in 2021. Both are still rolling across the red planet in the name of science. Another exploratory craft with a similar plutonium-238–fueled RTG but a very different mission—to fly between multiple test sites on Titan, Saturn’s largest moon—recently got one step closer to deployment.
On April 25, NASA and the Johns Hopkins University Applied Physics Laboratory (APL) announced that the Dragonfly mission to Saturn’s icy moon passed its critical design review. “Passing this mission milestone means that Dragonfly’s mission design, fabrication, integration, and test plans are all approved, and the mission can now turn its attention to the construction of the spacecraft itself,” according to NASA.
Dan Glenn, A. Sharif Heger, William B. Hladik III
Nuclear Technology | Volume 118 | Number 2 | May 1997 | Pages 142-150
Technical Paper | Radioisotopes and Isotopes | doi.org/10.13182/NT97-A35374
Articles are hosted by Taylor and Francis Online.
Nearly all the 99mTc administered to patients is obtained from eluting a radionuclide generator. The generators manufactured by the U.S. radiopharmaceutical companies use only the high-specific activity molybdenum produced by the fission of uranium. The dominant production methods are those used by Cintichem, Inc. and Nordion International. There are, however, competing methods of the production of fission-based 99Mo. One of the most promising proposed alternatives is the use of solution reactors (or homogeneous reactors). The operational characteristics of conventional reactors (i.e., Cintichem process) and those of solution reactors to produce 99Mo for use in manufacturing 99Mo/99mTc generators are examined. The use of conventional reactors has the disadvantage of generating large amounts of radioactive waste. The use of solution reactors can significantly reduce this problem. Both methods require rigorous processing to meet the purity requirements due to the presence of fission product contamination.