ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Mirion announces appointments
Mirion Technologies has announced three senior leadership appointments designed to support its global nuclear and medical businesses while advancing a company-wide digital and AI strategy. The leadership changes come as Mirion seeks to advance innovation and maintain strong performance in nuclear energy, radiation safety, and medical applications.
Travis W. Knight, G. Ronald Dalton, James S. Tulenko
Nuclear Technology | Volume 117 | Number 2 | February 1997 | Pages 255-266
Technical Paper | Radiation Protection | doi.org/10.13182/NT97-A35330
Articles are hosted by Taylor and Francis Online.
A virtual reality system was developed for computational and graphical modeling and simulation of radiation environments. This system, called Virtual Radiation Fields (VRF), demonstrates the usefulness of radiological analysis in simulation-based design for predicting radiation doses for robotic equipment and personnel working in a radiation environment. The system was developed for use in determining the radiation doses forobotic equipment to be used in tank-waste retrieval operations at the Hanford National Laboratory. As a reference case, specific application is made to simulate cleanup operations for Hanford tank C-106. A three-dimensional model representation of the tank and its predicted radiation levels are presented and analyzed. Tank cleanup operations were simulated to understand how radiation levels change during the cleanup phase and to predict cumulative radiation doses to robotic equipment to aid in the development of maintenance and replacement schedules.