ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Mirion announces appointments
Mirion Technologies has announced three senior leadership appointments designed to support its global nuclear and medical businesses while advancing a company-wide digital and AI strategy. The leadership changes come as Mirion seeks to advance innovation and maintain strong performance in nuclear energy, radiation safety, and medical applications.
Tsuyoshi Misawa, Seiji Shiroya, Keiji Kanda
Nuclear Technology | Volume 116 | Number 1 | October 1996 | Pages 9-18
Technical Paper | Fission Reactor | doi.org/10.13182/NT96-A35308
Articles are hosted by Taylor and Francis Online.
Experiments on the reactivity worth of beryllium metal were performed using the Kyoto University Critical Assembly, and they were analyzed to examine the validity of the computational method to treat (n,2n) reactions in calculations. The experimental results demonstrated that beryllium metal has positive reactivity worth compared with graphite. In the analysis, (n,2n) reactions were treated as modifying scattering cross sections in a transport calculation, whereas both scattering and absorption cross sections should be modified in a diffusion calculation. The results of calculations for the reactivity worth of beryllium agreed with experimental data within a few percent in the calculated-to-experimental ratio. Calculated results indicated that (n,2n) reactions of beryllium contribute by ∼85% to the positive reactivity worth compared with graphite in these experiments at a thermal reactor. Moreover, through the improved neutron and gamma-ray coupled calculation, the effect of (γ,n) reactions of beryllium on reactivity was estimated. It was found that (γ,n) reactions of beryllium can be negligible so far as this reactivity worth is concerned.